Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-...Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.展开更多
As a smart spectrum sharing technology, Cognitive Radio (CR) is becoming a hot topic in the field of wireless telecommunications. Besides providing traditional services, the cognitive radio network Media Access Contro...As a smart spectrum sharing technology, Cognitive Radio (CR) is becoming a hot topic in the field of wireless telecommunications. Besides providing traditional services, the cognitive radio network Media Access Control (MAC) layer is required to perform an entirely new set of functions for effective reusing spectrum opportunity, without causing any harmful interference to incumbents. Spectrum sensing management selects and optimizes sensing strategies and parameters by the selection of sensing mode, sensing period, sensing time, sensing channel, and sensing quiet period. Access control avoids collision with primary users mainly by cooperation access and transparent access. Dynamic spectrum allocation optimizes the allocation of uncertain spectrum for binary interference model and accumulative interference model. Security mechanism adds authentication and encryption mechanisms to MAC frame to defense MAC layer security attacks. Cross-layer design combines MAC layer information with physical layer or higher layers information, such as network layer, transmission layer, to achieve global optimization.展开更多
Despite the rapid development in Worldwide Interoperability for Microwave Access (WiMAX) technologies,key technologies for the Physical Layer (PHY) still need to be further improved so as to achieve highly efficient a...Despite the rapid development in Worldwide Interoperability for Microwave Access (WiMAX) technologies,key technologies for the Physical Layer (PHY) still need to be further improved so as to achieve highly efficient and reliable communication performance,as well as to support a mobile environment with a higher transmisison rate. As an amendment to IEEE 802.16d (for fixed broadband wireless access systems),IEEE 802.16e (for mobile broadband wireless access systems) introduces the Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) technologies into the PHY,doubling the transmission rate while supporting a certain degree of mobility. In the future,more advanced Air Interface (AI) technology is to be applied in the IEEE 802.16m standard.展开更多
A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multi...A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multiplication of transmitted and received signal is used as common randomness to generate secret keys.In quasi-static channel,the theoretical SKG rates(SKGRs)of the three SKG methods,namely wireless channel based,one-way randomness and two-way randomness,are derived and compared.Further,two practical SKG schemes based on twoway randomness,Scheme-1bit and Scheme-3bit,are completely designed and simulated.Generally,Scheme-1bit applies to low signal to noise ratio(SNR)scenarios and achieves 0.13~0.86bit/T_s SKGR and 10^(-2)~10^(-5) level secret key outage probability(SKOP),while Scheme-3bit fits high SNR situation and obtains 0.93~1.35bit/T_s SKGR and 10^(-3)~10^(-4) level SKOP.At last,the national institute of standards and technology(NIST)test is conducted to evaluate the secret key randomness(SKRD)and the test results show that both of the proposed schemes have passed the test.展开更多
Fog computing paradigm extends computing,communication,storage,and network resources to the network’s edge.As the fog layer is located between cloud and end-users,it can provide more convenience and timely services t...Fog computing paradigm extends computing,communication,storage,and network resources to the network’s edge.As the fog layer is located between cloud and end-users,it can provide more convenience and timely services to end-users.However,in fog computing(FC),attackers can behave as real fog nodes or end-users to provide malicious services in the network.The attacker acts as an impersonator to impersonate other legitimate users.Therefore,in this work,we present a detection technique to secure the FC environment.First,we model a physical layer key generation based on wireless channel characteristics.To generate the secret keys between the legitimate users and avoid impersonators,we then consider a Double Sarsa technique to identify the impersonators at the receiver end.We compare our proposed Double Sarsa technique with the other two methods to validate our work,i.e.,Sarsa and Q-learning.The simulation results demonstrate that the method based on Double Sarsa outperforms Sarsa and Q-learning approaches in terms of false alarm rate(FAR),miss detection rate(MDR),and average error rate(AER).展开更多
To secure the wireless connection between devices with low computational power has been a challenging problem due to heterogeneity in operating devices,device to device communication in Internet of Things(IoTs)and 5G ...To secure the wireless connection between devices with low computational power has been a challenging problem due to heterogeneity in operating devices,device to device communication in Internet of Things(IoTs)and 5G wireless systems.Physical layer key generation(PLKG)tackles this secrecy problem by introducing private keys among two connecting devices through wireless medium.In this paper,relative calibration is used as a method to enhance channel reciprocity which in turn increases the performance of the key generation process.Channel reciprocity based key generation is emerged as better PLKG methodology to obtain secure wireless connection in IoTs and 5G systems.Circulant deconvolution is proposed as a promising technique for relative calibration to ensure channel reciprocity in comparison to existing techniques Total Least Square(TLS)and Structured Total Least Square(STLS).The proposed deconvolution technique replicates the performance of the STLS by exploiting the possibility of higher information reuse and its lesser computational complexity leads to less processing time in comparison to the STLS.The presented idea is validated by observing the relation between signalto-noise ratio(SNR)and the correlation coefficient of the corresponding channel measurements between communicating parties.展开更多
The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production.Through the analysis of drill cores and log data of Upper Carbonif...The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production.Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block,eastern margin of Ordos Basin,four distinct superimposed coal measure gas-bearing systems were identified,and their formation mechanism was discussed from the sequence stratigraphic perspective.Type Ⅰ system mainly contains multiple coal seams,shales and sandstone layers.Type Ⅱ system is dominated by multiple coal seams and shales.Type Ⅲ is characterized by multiple sandstone layers,and type Ⅳ system is dominated by limestones and mudstones.In general,the gas-bearing systems deposited in barrier-lagoon are type Ⅱ,those deposited in carbonate tidal flats are type IV,and those deposited in the delta front are types Ⅰ and Ⅲ.The marine mudstone,acting as a key layer near the maximum flooding surface,exhibits very low permeability,which is the main factor contributing to the formation of superimposed gas-bearing systems.The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems.Notably,the vertical gas-bearing systems in the south-western region,where delta front and lagoon facies overlap,are more complex than those in the north-eastern delta front facies.展开更多
基金supported in part by the National Natural Science Foundation of China(No.U22A2001)the National Key Research and Development Program of China(No.2022YFB2902202,No.2022YFB2902205)。
文摘Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.
基金supported by the National Natural Science Foundation of China under Grant No.60772110.
文摘As a smart spectrum sharing technology, Cognitive Radio (CR) is becoming a hot topic in the field of wireless telecommunications. Besides providing traditional services, the cognitive radio network Media Access Control (MAC) layer is required to perform an entirely new set of functions for effective reusing spectrum opportunity, without causing any harmful interference to incumbents. Spectrum sensing management selects and optimizes sensing strategies and parameters by the selection of sensing mode, sensing period, sensing time, sensing channel, and sensing quiet period. Access control avoids collision with primary users mainly by cooperation access and transparent access. Dynamic spectrum allocation optimizes the allocation of uncertain spectrum for binary interference model and accumulative interference model. Security mechanism adds authentication and encryption mechanisms to MAC frame to defense MAC layer security attacks. Cross-layer design combines MAC layer information with physical layer or higher layers information, such as network layer, transmission layer, to achieve global optimization.
文摘Despite the rapid development in Worldwide Interoperability for Microwave Access (WiMAX) technologies,key technologies for the Physical Layer (PHY) still need to be further improved so as to achieve highly efficient and reliable communication performance,as well as to support a mobile environment with a higher transmisison rate. As an amendment to IEEE 802.16d (for fixed broadband wireless access systems),IEEE 802.16e (for mobile broadband wireless access systems) introduces the Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) technologies into the PHY,doubling the transmission rate while supporting a certain degree of mobility. In the future,more advanced Air Interface (AI) technology is to be applied in the IEEE 802.16m standard.
基金supported by National Natural Science Foundation of China(61521003,61501516,61471396,61401510)Postdoctoral Science Foundation of China(2016M592990)
文摘A novel secret key generation(SKG)method based on two-way randomness is proposed for TDD-SISO system.The legitimate transceivers mutually transmit their own random signal via reciprocal wireless channel,then the multiplication of transmitted and received signal is used as common randomness to generate secret keys.In quasi-static channel,the theoretical SKG rates(SKGRs)of the three SKG methods,namely wireless channel based,one-way randomness and two-way randomness,are derived and compared.Further,two practical SKG schemes based on twoway randomness,Scheme-1bit and Scheme-3bit,are completely designed and simulated.Generally,Scheme-1bit applies to low signal to noise ratio(SNR)scenarios and achieves 0.13~0.86bit/T_s SKGR and 10^(-2)~10^(-5) level secret key outage probability(SKOP),while Scheme-3bit fits high SNR situation and obtains 0.93~1.35bit/T_s SKGR and 10^(-3)~10^(-4) level SKOP.At last,the national institute of standards and technology(NIST)test is conducted to evaluate the secret key randomness(SKRD)and the test results show that both of the proposed schemes have passed the test.
基金supported by Natural Science Foundation of China(61801008)The China National Key R&D Program(No.2018YFB0803600)+1 种基金Scientific Research Common Program of Beijing Municipal Commission of Education(No.KM201910005025)Chinese Postdoctoral Science Foundation(No.2020M670074).
文摘Fog computing paradigm extends computing,communication,storage,and network resources to the network’s edge.As the fog layer is located between cloud and end-users,it can provide more convenience and timely services to end-users.However,in fog computing(FC),attackers can behave as real fog nodes or end-users to provide malicious services in the network.The attacker acts as an impersonator to impersonate other legitimate users.Therefore,in this work,we present a detection technique to secure the FC environment.First,we model a physical layer key generation based on wireless channel characteristics.To generate the secret keys between the legitimate users and avoid impersonators,we then consider a Double Sarsa technique to identify the impersonators at the receiver end.We compare our proposed Double Sarsa technique with the other two methods to validate our work,i.e.,Sarsa and Q-learning.The simulation results demonstrate that the method based on Double Sarsa outperforms Sarsa and Q-learning approaches in terms of false alarm rate(FAR),miss detection rate(MDR),and average error rate(AER).
文摘To secure the wireless connection between devices with low computational power has been a challenging problem due to heterogeneity in operating devices,device to device communication in Internet of Things(IoTs)and 5G wireless systems.Physical layer key generation(PLKG)tackles this secrecy problem by introducing private keys among two connecting devices through wireless medium.In this paper,relative calibration is used as a method to enhance channel reciprocity which in turn increases the performance of the key generation process.Channel reciprocity based key generation is emerged as better PLKG methodology to obtain secure wireless connection in IoTs and 5G systems.Circulant deconvolution is proposed as a promising technique for relative calibration to ensure channel reciprocity in comparison to existing techniques Total Least Square(TLS)and Structured Total Least Square(STLS).The proposed deconvolution technique replicates the performance of the STLS by exploiting the possibility of higher information reuse and its lesser computational complexity leads to less processing time in comparison to the STLS.The presented idea is validated by observing the relation between signalto-noise ratio(SNR)and the correlation coefficient of the corresponding channel measurements between communicating parties.
基金supported by the National Natural Science Foundation of China(Grant Nos.42072198 and 42130802)the Fundamental Research Funds for the Central Universities(No.265QZ2021011).
文摘The identification of superimposed gas-bearing systems in coal measures is the basis for expediting the optimization of coal measure gas co-production.Through the analysis of drill cores and log data of Upper Carboniferous Benxi Formation to the member 8 of Middle Permian Lower Shihezi Formation in Daning-Jixian block,eastern margin of Ordos Basin,four distinct superimposed coal measure gas-bearing systems were identified,and their formation mechanism was discussed from the sequence stratigraphic perspective.Type Ⅰ system mainly contains multiple coal seams,shales and sandstone layers.Type Ⅱ system is dominated by multiple coal seams and shales.Type Ⅲ is characterized by multiple sandstone layers,and type Ⅳ system is dominated by limestones and mudstones.In general,the gas-bearing systems deposited in barrier-lagoon are type Ⅱ,those deposited in carbonate tidal flats are type IV,and those deposited in the delta front are types Ⅰ and Ⅲ.The marine mudstone,acting as a key layer near the maximum flooding surface,exhibits very low permeability,which is the main factor contributing to the formation of superimposed gas-bearing systems.The sedimentary environment plays a significant role in controlling the distribution of gas-bearing systems.Notably,the vertical gas-bearing systems in the south-western region,where delta front and lagoon facies overlap,are more complex than those in the north-eastern delta front facies.