期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Equilibrium and kinetic Si isotope fractionation factors and their implications for Si isotope distributions in the Earth's surface environments 被引量:3
1
作者 Hong-tao He Siting Zhang +1 位作者 Chen Zhu Yun Liu 《Acta Geochimica》 EI CAS CSCD 2016年第1期15-24,共10页
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth'... Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants. 展开更多
关键词 Si isotopes Equilibrium fractionation factor Quantum chemistry calculation Cluster model Kinetic isotope effect
下载PDF
Kinetic Factors for Intensive Reaction of Magnesium-Based Spheroidiser in Hot Metal
2
作者 SHENG Da 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2005年第1期9-11,共3页
The spheroidiser is a necessary additive to manufacture ductile iron.Sometimes with the same hot metal,spheroidisers and treated technology,reactions differ greatly from each other.The reaction may be quite normal in ... The spheroidiser is a necessary additive to manufacture ductile iron.Sometimes with the same hot metal,spheroidisers and treated technology,reactions differ greatly from each other.The reaction may be quite normal in one case,but very intensive for another one.The effects of kinetic factors such as size,surface area and morphology o f spheroidiser on the reaction of spheoidization are studied. 展开更多
关键词 hot metal kinetic factor diffusion rate intensive reaction spheroidiser MAGNESIUM
下载PDF
Hydrologic implications of the isotopic kinetic fractionation of open-water evaporation 被引量:1
3
作者 Wei XIAO Yufei QIAN +10 位作者 Xuhui LEE Wei WANG Mi ZHANG Xuefa WEN Shoudong LIU Yongbo HU Chengyu XIE Zhen ZHANG Xuesong ZHANG Xiaoyan ZHAO Fucun ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第10期1523-1532,共10页
The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ^(18)O is an important mechanism underlying many hydrologic studies that use ^(18)O as an isotopic tracer. A recent in-situ meas... The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ^(18)O is an important mechanism underlying many hydrologic studies that use ^(18)O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker(kinetic factor 6.2‰) than assumed previously(kinetic factor14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans.The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9%(with the default kinetic factor) to 76±19%(with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results. 展开更多
关键词 Kinetic fractionation factor Craig-Gordon model Moisture recycling Evapotranspiration partitioning Deuteriumexcess
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部