期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Intelligent Information Management and Knowledge Discovery in Large Numeric and Scientific Databases
1
作者 Patrick Perrin Frederick E. Petry & William Thomason(Center for Intelligent and Knowledge-Based Systems)(Computer Science Department, Tulane University, New Orleans LA) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第2期73-86,共14页
The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to th... The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules. 展开更多
关键词 knowledge discovery in databases Machine learning Decision tree inducers
下载PDF
A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System 被引量:7
2
作者 Siva S. Sivatha Sindhu S. Geetha +1 位作者 M. Marikannan A. Kannan 《International Journal of Automation and computing》 EI 2009年第4期406-414,共9页
Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attac... Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attacks made in this way, usually done by "authorized" users of the system, cannot be immediately traced. Because the idea of filtering the traffic at the entrance door, by using firewalls and the like, is not completely successful, the use of intrusion detection systems should be considered to increase the defense capacity of an information system. An intrusion detection system (IDS) is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current IDS depends on the system operators in working out the tuning solution and in integrating it into the detection model. Furthermore, an extensive effort is required to tackle the newly evolving attacks and a deep study is necessary to categorize it into the respective classes. To reduce this dependence, an automatically evolving anomaly IDS using neuro-genetic algorithm is presented. The proposed system automatically tunes the detection model on the fly according to the feedback provided by the system operator when false predictions are encountered. The system has been evaluated using the Knowledge Discovery in Databases Conference (KDD 2009) intrusion detection dataset. Genetic paradigm is employed to choose the predominant features, which reveal the occurrence of intrusions. The neuro-genetic IDS (NGIDS) involves calculation of weightage value for each of the categorical attributes so that data of uniform representation can be processed by the neuro-genetic algorithm. In this system unauthorized invasion of a user are identified and newer types of attacks are sensed and classified respectively by the neuro-genetic algorithm. The experimental results obtained in this work show that the system achieves improvement in terms of misclassification cost when compared with conventional IDS. The results of the experiments show that this system can be deployed based on a real network or database environment for effective prediction of both normal attacks and new attacks. 展开更多
关键词 Genetic algorithm intrusion detection system (IDS) neural networks weightage calculation knowledge discovery in databases (KDD) classification.
下载PDF
An Overview of Data Mining and Knowledge Discovery 被引量:8
3
作者 范建华 李德毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第4期348-368,共21页
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ... With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research. 展开更多
关键词 knowledge discovery in databases data mining machine learning association rule CLASSIFICATION data clustering data generalization pattern searching
原文传递
Knowledge Discovery and its Applications in Telecommunications Industry 被引量:2
4
作者 WanYan SiYaqing 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 1999年第1期46-51,共6页
It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and s... It is important for telecom companies to make sense of the large number of data they have accumulated over the years. This paper reviews the concepts and the techniques of knowledge discovery in databases (KDD), and surveys applications of this technology in the telecommunications sector all over the world. It also discusses some possible applications of this technology in China, and reports a preliminary result of the first attempt to apply KDD technique in telephone traffic volume prediction. It concludes that KDD is a promising technology that can help to enhance-the competitiveness of China's telecom companies in the face of looming competition in a liberated market. 展开更多
关键词 knowledge discovery in databases telecommunications data mining
原文传递
Some Massively Parallel Algorithms from Nature
5
作者 Li Yan, Kang Li-shan, Chen Yu-ping, Liu Pu, Cao Hong-qing, Pan Zheng-jun The State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2002年第1期37-46,共10页
We introduced the work on parallel problem solvers from physics and biology being developed by the research team at the State Key Laboratory of Software Engineering, Wuhan University. Results on parallel solvers inclu... We introduced the work on parallel problem solvers from physics and biology being developed by the research team at the State Key Laboratory of Software Engineering, Wuhan University. Results on parallel solvers include the following areas: Evolutionary algorithms based on imitating the evolution processes of nature for parallel problem solving, especially for parallel optimization and model-building; Asynchronous parallel algorithms based on domain decomposition which are inspired by physical analogies such as elastic relaxation process and annealing process, for scientific computations, especially for solving nonlinear mathematical physics problems. All these algorithms have the following common characteristics: inherent parallelism, self-adaptation and self-organization, because the basic ideas of these solvers are from imitating the natural evolutionary processes. 展开更多
关键词 evolutionary computation parallel algorithm imitating nature domain decomposition knowledge discovery in databases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部