Small scale farmers constitute about half of world's hungry people and include three quarters of Africa's malnourished children. The appropriate identification and characterization of this population and the constra...Small scale farmers constitute about half of world's hungry people and include three quarters of Africa's malnourished children. The appropriate identification and characterization of this population and the constraints it faces are essential for the design and the successful implementation of safety nets and to properly target their needs and effectively include them in agricultural development strategies. This paper aims at exploring the characteristics, limitations, and potential for agricultural development of small scale farmers in developing countries. It calculates four land cultivated thresholds which are then used as a measure to classify households that were surveyed in four developing countries. It empirically estimates the magnitudes of the smallholders, their characteristics, as well as their poverty status using the four thresholds. This analysis provides empirical evidence that small scale farmers still prevail in terms of population distribution in rural area settings in developing countries. Small scale farmers heavily rely on farm income as their form of livelihood and heavily contribute to the rural income. It also finds that land is unequally distributed among small and large scale farmers in the rural households. Small scale farmers also have the highest poverty rates in these rural settings.展开更多
Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic acti...Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.展开更多
A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effec...A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.展开更多
A systematic, accurate and robust evaluating method for fine pitch printed circuit board (PCB) positioning assessment in testing fixture is developed. Targeting reliability of bed-of-nails tester is successfully eva...A systematic, accurate and robust evaluating method for fine pitch printed circuit board (PCB) positioning assessment in testing fixture is developed. Targeting reliability of bed-of-nails tester is successfully evaluated by the 2D pattern transform. Probe offset vector with its Weibull and Gaussian distribution estimates are obtained for further investigation about the causes of misalignment on the basis of a batch tests for same kind of PCBs.展开更多
Pulsating pressure plays an important role in improving the poor irrigation quality and the uneven water distribution caused by the terrain slope.Water distribution is one of the key factors in design of the sprinkler...Pulsating pressure plays an important role in improving the poor irrigation quality and the uneven water distribution caused by the terrain slope.Water distribution is one of the key factors in design of the sprinkler irrigation system,however,it is difficult to measure in practice.To provide appropriate technical parameters for the design of sprinkler irrigation system with pulsating pressure on sloping land,a mathematical model was established according to the water conservation principle and finite element idea,and its accuracy was experimentally verified.The model was applied to study the effects of terrain slope,sprinkler arrangement,sprinkler spacing and average pulsating pressure on water distribution on sloping land.The results showed that the water distribution was more favorable under the gentle terrain slope,when slope decreased from 25%to 5%,the uniformity increased from 74.47%to 86.22%.Sprinklers arranged in equilateral triangle and with the spacing close to R_(0)had the best water distribution uniformity,the uniformity coefficient(CU)of which was 11.43%and 8.75%higher than that in square and rectangular arrangement,respectively.The CU increased with the increase of the average pulsating pressure.However,the effect of increasing water pressure on promoting the uniformity of water distribution gradually decreases.Therefore,when using the Rainbird R5000 sprinkler on sloping land with pulsating pressure,it is suggested that the sprinkler irrigation systems should be arranged below the terrain slope of 20%,and operated at the average pulsating pressure of 300 kPa.The suitable sprinkler arrangement is the equilateral triangle,and with the spacing of 0.8R_(0)to 1.0R_(0).展开更多
The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually ...The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually obtained from empirical knowledge and site experiments in the 1980 s. However, the environmental settings have been greatly modified from that time due to land use change and groundwater over-pumping, especially in the Beijing plain area(BPA). This paper aims to estimate and analyze PRC of BPA with the distributed hydrological model and GIS for the year 2011 with similar annual precipitation as long-term mean. It is found that the recharge from vertical(precipitation + irrigation) and precipitation is 291.0 mm/yr and 233.7 mm/yr, respectively, which accounts for 38.6% and 36.6% of corresponding input water. The regional mean PRC is 0.366, which is a little different from the traditional map. However, it has a spatial variation ranging from –7.0% to 17.5% for various sub-regions. Since the vadose zone is now much thicker than the evaporation extinction depth, the land cover is regarded as the major dynamic factor that causes the variation of PRC in this area due to the difference of evapotranspiration rates. It is suggested that the negative impact of reforestation on groundwater quantity within BPA should be well investigated, because the PRC beneath forestland is the smallest among all land cover types.展开更多
To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical ana...To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.展开更多
Based on the global distribution of land and soil quality and the world population,future trends in the agricultural use of land and soil resources are described,which will severely compromise future global food and f...Based on the global distribution of land and soil quality and the world population,future trends in the agricultural use of land and soil resources are described,which will severely compromise future global food and fiber production through the increase and the spatial changes of world population,through the loss of fertile land caused by insufficient soil management and through urbanisation and industrialization Moreover,future changes in life style and the increasing demand for food and bioenergy,trough changes in world economy,through climate change and a worldwide decrease in fresh water supply,sustainable land use for the production of food and fiber will be under threat.Until 2050 global food production must be doubled for satisfying global needs.Our scenarios should help to preview future changes,to counterbalance and to mitigate possible negative impacts,thus sustaining global food security.展开更多
文摘Small scale farmers constitute about half of world's hungry people and include three quarters of Africa's malnourished children. The appropriate identification and characterization of this population and the constraints it faces are essential for the design and the successful implementation of safety nets and to properly target their needs and effectively include them in agricultural development strategies. This paper aims at exploring the characteristics, limitations, and potential for agricultural development of small scale farmers in developing countries. It calculates four land cultivated thresholds which are then used as a measure to classify households that were surveyed in four developing countries. It empirically estimates the magnitudes of the smallholders, their characteristics, as well as their poverty status using the four thresholds. This analysis provides empirical evidence that small scale farmers still prevail in terms of population distribution in rural area settings in developing countries. Small scale farmers heavily rely on farm income as their form of livelihood and heavily contribute to the rural income. It also finds that land is unequally distributed among small and large scale farmers in the rural households. Small scale farmers also have the highest poverty rates in these rural settings.
基金the National Natural Science Foundation of China (40621061)the Project of Chinese Academy of Sciences (KZCX2-XB2-02-31) for their financial support
文摘Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.
基金supported jointly by the "National Key Developing Programme for Basic Science" project 2006CB400500China Postdoctoral Science Foundation 20070410133National Natural Science Foundation of China General Program 40905042, and 40675042
文摘A number of AGCM simulations were performed by including various land–sea distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical large-scale LSDs, and subcontinental-scale LSDs, to identify their effects on the Asian monsoon. In seven meridional LSD experiments with the continent/ocean located to the north/south of a certain latitude, the LSDs remain identical except the southern coastline is varied from 40 ° to 4 ° N in intervals of 5.6° . In the experiments with the coastline located to the north of 21° N, no monsoon can be found in the subtropical zone. In contrast, a summer monsoon is simulated when the continent extends to the south of 21 ° N. Meanwhile, the earlier onset and stronger intensity of the tropical summer monsoon are simulated with the southward extension of the tropical continent. The effects of zonal LSDs were investigated by including the Pacific and Atlantic Ocean into the model based on the meridional LSD run with the coastline located at 21 °N. The results indicate that the presence of a mid-latitude zonal LSD induces a strong zonal pressure gradient between the continent and ocean, which in turn results in the formation of an East Asian subtropical monsoon. The comparison of simulations with and without the Indian Peninsula and Indo-China Peninsula reveals that the presence of two peninsulas remarkably strengthens the southwesterly winds over South Asia due to the tropical asymmetric heating between the tropical land and sea. The tropical zonal LSD plays a crucial role in the formation of cumulus convection.
基金This project is supported by US Pennsylvania Dept. of Community & Economic Development(No.20-906-0015)National Natural Science Foundation of China(No.50390064, No.50575230)National Basic Research Program of China(973 Program, No.2003CB716202).
文摘A systematic, accurate and robust evaluating method for fine pitch printed circuit board (PCB) positioning assessment in testing fixture is developed. Targeting reliability of bed-of-nails tester is successfully evaluated by the 2D pattern transform. Probe offset vector with its Weibull and Gaussian distribution estimates are obtained for further investigation about the causes of misalignment on the basis of a batch tests for same kind of PCBs.
基金This research was funded by National Natural Science Foundation of China(51779246).
文摘Pulsating pressure plays an important role in improving the poor irrigation quality and the uneven water distribution caused by the terrain slope.Water distribution is one of the key factors in design of the sprinkler irrigation system,however,it is difficult to measure in practice.To provide appropriate technical parameters for the design of sprinkler irrigation system with pulsating pressure on sloping land,a mathematical model was established according to the water conservation principle and finite element idea,and its accuracy was experimentally verified.The model was applied to study the effects of terrain slope,sprinkler arrangement,sprinkler spacing and average pulsating pressure on water distribution on sloping land.The results showed that the water distribution was more favorable under the gentle terrain slope,when slope decreased from 25%to 5%,the uniformity increased from 74.47%to 86.22%.Sprinklers arranged in equilateral triangle and with the spacing close to R_(0)had the best water distribution uniformity,the uniformity coefficient(CU)of which was 11.43%and 8.75%higher than that in square and rectangular arrangement,respectively.The CU increased with the increase of the average pulsating pressure.However,the effect of increasing water pressure on promoting the uniformity of water distribution gradually decreases.Therefore,when using the Rainbird R5000 sprinkler on sloping land with pulsating pressure,it is suggested that the sprinkler irrigation systems should be arranged below the terrain slope of 20%,and operated at the average pulsating pressure of 300 kPa.The suitable sprinkler arrangement is the equilateral triangle,and with the spacing of 0.8R_(0)to 1.0R_(0).
基金Under the auspices of Beijing Natural Science Foundation(No.8152012)National Natural Science Foundation of China(No.41101033,41130744,41171335)
文摘The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually obtained from empirical knowledge and site experiments in the 1980 s. However, the environmental settings have been greatly modified from that time due to land use change and groundwater over-pumping, especially in the Beijing plain area(BPA). This paper aims to estimate and analyze PRC of BPA with the distributed hydrological model and GIS for the year 2011 with similar annual precipitation as long-term mean. It is found that the recharge from vertical(precipitation + irrigation) and precipitation is 291.0 mm/yr and 233.7 mm/yr, respectively, which accounts for 38.6% and 36.6% of corresponding input water. The regional mean PRC is 0.366, which is a little different from the traditional map. However, it has a spatial variation ranging from –7.0% to 17.5% for various sub-regions. Since the vadose zone is now much thicker than the evaporation extinction depth, the land cover is regarded as the major dynamic factor that causes the variation of PRC in this area due to the difference of evapotranspiration rates. It is suggested that the negative impact of reforestation on groundwater quantity within BPA should be well investigated, because the PRC beneath forestland is the smallest among all land cover types.
基金supported by the Major Projects on Control and Rectification of Water Body Pollution(No.2008ZX07315-001)
文摘To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.
文摘Based on the global distribution of land and soil quality and the world population,future trends in the agricultural use of land and soil resources are described,which will severely compromise future global food and fiber production through the increase and the spatial changes of world population,through the loss of fertile land caused by insufficient soil management and through urbanisation and industrialization Moreover,future changes in life style and the increasing demand for food and bioenergy,trough changes in world economy,through climate change and a worldwide decrease in fresh water supply,sustainable land use for the production of food and fiber will be under threat.Until 2050 global food production must be doubled for satisfying global needs.Our scenarios should help to preview future changes,to counterbalance and to mitigate possible negative impacts,thus sustaining global food security.