Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of r...Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of residual stress,including the machining stress and initial residual stress,which will deteriorate the flatness of the workpiece and ultimately affect the performance of components.In this study,finite element method(FEM)was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping.Considering the initial residual stress of the workpiece,the stress caused by the lapping and their distribution characteristics,a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters.The results showed that the primary cause of the warping deformation of the workpiece in the doublesided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces.The finite element simulation results were in good agreement with the experimental results.展开更多
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the...An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.展开更多
基金National Key Research and Development Program of China(Grant No.2018YFA0702900)Science Challenge Project of China(Grant No.TZ2016006)National Natural Science Foundation of China(Grant No.51975096)。
文摘Double-sided lapping is an precision machining method capable of obtaining high-precision surface.However,during the lapping process of thin pure copper substrate,the workpiece will be warped due to the influence of residual stress,including the machining stress and initial residual stress,which will deteriorate the flatness of the workpiece and ultimately affect the performance of components.In this study,finite element method(FEM)was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping.Considering the initial residual stress of the workpiece,the stress caused by the lapping and their distribution characteristics,a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters.The results showed that the primary cause of the warping deformation of the workpiece in the doublesided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces.The finite element simulation results were in good agreement with the experimental results.
文摘An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.