A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s...A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s scheme was included to improve the theoretical model proposed by Tan and Wu (1993). The model could keep the same complexity as the classical Ekman model in numerical, but extends the conventional Ekman model to include the horizontal accelerated flow with the Ekman momentum approximation. A comparison between this modified Ekman model and other simplified accelerating PBL models is made. Results show that the Ekman model overestimates (underestimates) the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow due to the neglect of the acceleration flow, however, the semi–geostrophic Ekman model overestimates the acceleration effects resulting from the underestimating (overestimating) of the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow. The Ekman momentum approximation boundary layer model could be applied to the baroclinic atmosphere. The baroclinic Ekman momentum approximation boundary layer solution has both features of classical baroclinic Ekman layer and the Ekman momentum approximate boundary lager.展开更多
A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, an...A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.展开更多
A dataset of hourly sea surface temperature(SST) from the period 1 January 1982 to 31 December 2012, and covering the global ocean at a resolution of 0.3°× 0.3°, was created using a validated ocean mixe...A dataset of hourly sea surface temperature(SST) from the period 1 January 1982 to 31 December 2012, and covering the global ocean at a resolution of 0.3°× 0.3°, was created using a validated ocean mixed-layer model(MLSST). The model inputs were heat flux and surface wind speed obtained from the Coupled Forecast System Reanalysis dataset. Comparisons with in-situ data from the Tropical Atmosphere Ocean array and the National Data Buoy Center showed that the MLSST fitted very well with observations, with a mean bias of 0.07℃, and a root-mean-square error(RMSE) and correlation coefficient of 0.37℃ and 0.98, respectively. Also, the MLSST fields successfully reproduced the diurnal cycle of SST in the in-situ data, with a mean bias of -0.005℃ and RMSE of 0.26℃. The 31-year climatology revealed that the diurnal range was small across most regions, with higher values in the eastern and western equatorial Pacific, northern Indian Ocean, western Central America, northwestern Australia, and several coastal regions. Significant seasonal variation of diurnal SST existed in all basins. In the Atlantic and Pacific basins, this seasonal pattern was oriented north–south, following the variation in solar insolation, whereas in the Indian basin it was dominated by monsoonal variability. At the interannual scale, the results highlighted the relationship between diurnal and interannual variations of SST, and revealed that the diurnal warming in the central equatorial Pacific could be a potential climatic indicator for ENSO prediction.展开更多
A micro-layer model is proposed to account for the lubrication effect of liquid layer near collisions of immersed particles at moderate particle Reynolds number.This new model is to allow determination of the pressure...A micro-layer model is proposed to account for the lubrication effect of liquid layer near collisions of immersed particles at moderate particle Reynolds number.This new model is to allow determination of the pressure profile within the micro-layer including the fluid inertia and viscosity.Then a correction based on the micro-layer model is applied to unsteady 3-D direct simulation of a particle approaching another one.The simulation is based on a modified immersed boundary method with direct force scheme.The quantitative agreement between numerical and experimental results validates the model presented in the study.The simulation results show that the fluid is squeezed prior to contact.When a particle approaches a flat wall or another particle,the lubrication force,obtained by integrating the pressure profile over the particle surface,is increased and prevents the particle from approaching.The model predicts that the velocity of approaching particle starts to decrease when separation distance of particles is less than 0.1dp,where dp is the particle diameter.展开更多
The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows lon...The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.展开更多
With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Per...With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Perceptual Evaluation of Audio Quality) recommended by ITU, usually lead to poor results when assessing multichannel audio, which have little correlation with subjective scores. In this paper, a novel two-layer model based on Multiple Linear Regression(MLR) and Neural Network(NN) is proposed. Through the first layer, two indicators of multichannel audio, Audio Quality Score(AQS) and Spatial Perception Score(SPS) are derived, and through the second layer the overall score is output. The final results show that this model can not only improve the correlation with the subjective test score by 30.7% and decrease the Root Mean Square Error(RMSE) by 44.6%, but also add two new indicators: AQS and SPS, which can help reflect the multichannel audio quality more clearly.展开更多
Ionospheric delay error is considered to be one of the most prominent factors impacting the Global Navigation Satellite Systems(GNSS) positioning and navigation accuracies. Due to dispersive nature and anisotropic of ...Ionospheric delay error is considered to be one of the most prominent factors impacting the Global Navigation Satellite Systems(GNSS) positioning and navigation accuracies. Due to dispersive nature and anisotropic of the ionosphere above certain regions, the positioning accuracy is seriously affected when using a precision-limited model. In this paper, an attempt has been taken to estimate ionosphere-delays based on Planar Fit(PF) and Spherical Harmonic Function(SHF) models by applying the commonly used single layer Model(SLM) and an extended single layer model(ESLM) which has been explored sparsely over the region. The results show that ESLM of PF and SHF techniques performed better in estimating ionospheric delay compared to the existing SLM model. Although the performance of the ESLM approach is almost comparable to the SLM results during the quiet ionospheric conditions, the ESLM-PF and ESLMSHF models led to respective improvements of 4.66% and 7.14% over the classically used SLM model under the disturbed ionospheric conditions. In view of the uneven variability of equatorial/low latitude ionosphere above the Indian subcontinental region, the suitability of ESLM-PF and ESLM-SHF models has been emphasized and suggested for assessing its completeness and reliableness across other parts of the globe. The output of this work may be useful for high precession GNSS positioning through mitigating the ionospheric delays under quiet as well as varied ionospheric conditions across the low/equatorial latitude regions.展开更多
The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under ...The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.展开更多
A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary laye...A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary layer for inclusion removal was proposed by a statistical method.It is noticed that the capture of inclusions by steel-slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions.In high turbulent flow fields,the transport of inclusions is mainly dominated by the turbulent flow,and thus,the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter.The inertia of inclusions gradually takes over the stochastic effect of turbulent flow,and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy.Besides,the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions.As the characteristic velocity increases,the time for inclusions transport and interaction with steel-slag interface decreases,and thus,the effective boundary layer thickness decreases.Moreover,the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of a turbulent fluid flow in the metallurgical vessel.展开更多
In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizi...In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizing the Fourier splitting method, under suitable assumptions on the initial data, for any multi-index α, we show that the solution Ψ satisfies .展开更多
An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical react...An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
The optical measurement technique based on Mie scattering has been applied to various areas, in which single scattering at low particle concentration is assumed. Nevertheless, since multiple scattering is usually unav...The optical measurement technique based on Mie scattering has been applied to various areas, in which single scattering at low particle concentration is assumed. Nevertheless, since multiple scattering is usually unavoidable in online measurements, we present in this work a multiple scattering calculation method, in which a layer model is employed. The three-dimensional particle system is divided into a pile of layers the number of which is automatically determined, depending on the obscuration of the particle system. The calculation is found to be fast, reasonable and reliable.展开更多
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz...This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.展开更多
A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-sh...A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic sub- strate systems. Upon comparing with the predictions ob- tained by employing the traditional shear-lag model, the present three-layer structure model is found to be more ac- curate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.展开更多
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted ...In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing.展开更多
Arnol'd's second nonlinear stability criterion for motions governed by a general multilayer quasi-geostrophic model is established. The model allows arbitrary density jumps and layer thickness, and at the top ...Arnol'd's second nonlinear stability criterion for motions governed by a general multilayer quasi-geostrophic model is established. The model allows arbitrary density jumps and layer thickness, and at the top and the bottom of the nuid, the boundary condition is either free or rigid. The criterion is obtained by the establishment of the upper bounds of disturbance energy and potential enstrophy in terms of the initial disturbance field.展开更多
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press...Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
基金National Key Basic Research Project: Research on the FormationMechanism and Predication Theory of severe synoptic Disasters in
文摘A quasi three–dimensional, intermediate planetary boundary layer (PBL) model is developed by including inertial acceleration with the Ekman momentum approximation, but a nonlinear eddy viscosity based on Blackadar’s scheme was included to improve the theoretical model proposed by Tan and Wu (1993). The model could keep the same complexity as the classical Ekman model in numerical, but extends the conventional Ekman model to include the horizontal accelerated flow with the Ekman momentum approximation. A comparison between this modified Ekman model and other simplified accelerating PBL models is made. Results show that the Ekman model overestimates (underestimates) the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow due to the neglect of the acceleration flow, however, the semi–geostrophic Ekman model overestimates the acceleration effects resulting from the underestimating (overestimating) of the wind speed and pumping velocity in the cyclonic (anticyclonic) shear flow. The Ekman momentum approximation boundary layer model could be applied to the baroclinic atmosphere. The baroclinic Ekman momentum approximation boundary layer solution has both features of classical baroclinic Ekman layer and the Ekman momentum approximate boundary lager.
文摘A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.
基金support of the National Programme on Global Change and Air–Sea Interaction (GASI-IPOVAI-06)the National Basic Research (973) Program of China (Grant No.2014CB745004)the National Natural Science Foundation of China (Grant No.41376016)
文摘A dataset of hourly sea surface temperature(SST) from the period 1 January 1982 to 31 December 2012, and covering the global ocean at a resolution of 0.3°× 0.3°, was created using a validated ocean mixed-layer model(MLSST). The model inputs were heat flux and surface wind speed obtained from the Coupled Forecast System Reanalysis dataset. Comparisons with in-situ data from the Tropical Atmosphere Ocean array and the National Data Buoy Center showed that the MLSST fitted very well with observations, with a mean bias of 0.07℃, and a root-mean-square error(RMSE) and correlation coefficient of 0.37℃ and 0.98, respectively. Also, the MLSST fields successfully reproduced the diurnal cycle of SST in the in-situ data, with a mean bias of -0.005℃ and RMSE of 0.26℃. The 31-year climatology revealed that the diurnal range was small across most regions, with higher values in the eastern and western equatorial Pacific, northern Indian Ocean, western Central America, northwestern Australia, and several coastal regions. Significant seasonal variation of diurnal SST existed in all basins. In the Atlantic and Pacific basins, this seasonal pattern was oriented north–south, following the variation in solar insolation, whereas in the Indian basin it was dominated by monsoonal variability. At the interannual scale, the results highlighted the relationship between diurnal and interannual variations of SST, and revealed that the diurnal warming in the central equatorial Pacific could be a potential climatic indicator for ENSO prediction.
文摘A micro-layer model is proposed to account for the lubrication effect of liquid layer near collisions of immersed particles at moderate particle Reynolds number.This new model is to allow determination of the pressure profile within the micro-layer including the fluid inertia and viscosity.Then a correction based on the micro-layer model is applied to unsteady 3-D direct simulation of a particle approaching another one.The simulation is based on a modified immersed boundary method with direct force scheme.The quantitative agreement between numerical and experimental results validates the model presented in the study.The simulation results show that the fluid is squeezed prior to contact.When a particle approaches a flat wall or another particle,the lubrication force,obtained by integrating the pressure profile over the particle surface,is increased and prevents the particle from approaching.The model predicts that the velocity of approaching particle starts to decrease when separation distance of particles is less than 0.1dp,where dp is the particle diameter.
基金Acknowledgments. The authors would like to thank Prof. Z. Yuan for her numerous suggestions in the writing of this paper. This work is supported by the National Natural Science Foundation of China (Grant No.40176009), the National Key Programme for Devel
文摘The strong nonlinearity of boundary layer parameterizations in atmospheric and oceanic models can cause difficulty for tangent linear models in approximating nonlinear perturbations when the time integration grows longer. Consequently, the related 4—D variational data assimilation problems could be difficult to solve. A modified tangent linear model is built on the Mellor-Yamada turbulent closure (level 2.5) for 4-D variational data assimilation. For oceanic mixed layer model settings, the modified tangent linear model produces better finite amplitude, nonlinear perturbation than the full and simplified tangent linear models when the integration time is longer than one day. The corresponding variational data assimilation performances based on the adjoint of the modified tangent linear model are also improved compared with those adjoints of the full and simplified tangent linear models.
基金supported by the National Natural Science Foundation of China (No.61571044,No.11590772,and No.61473041)
文摘With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Perceptual Evaluation of Audio Quality) recommended by ITU, usually lead to poor results when assessing multichannel audio, which have little correlation with subjective scores. In this paper, a novel two-layer model based on Multiple Linear Regression(MLR) and Neural Network(NN) is proposed. Through the first layer, two indicators of multichannel audio, Audio Quality Score(AQS) and Spatial Perception Score(SPS) are derived, and through the second layer the overall score is output. The final results show that this model can not only improve the correlation with the subjective test score by 30.7% and decrease the Root Mean Square Error(RMSE) by 44.6%, but also add two new indicators: AQS and SPS, which can help reflect the multichannel audio quality more clearly.
文摘Ionospheric delay error is considered to be one of the most prominent factors impacting the Global Navigation Satellite Systems(GNSS) positioning and navigation accuracies. Due to dispersive nature and anisotropic of the ionosphere above certain regions, the positioning accuracy is seriously affected when using a precision-limited model. In this paper, an attempt has been taken to estimate ionosphere-delays based on Planar Fit(PF) and Spherical Harmonic Function(SHF) models by applying the commonly used single layer Model(SLM) and an extended single layer model(ESLM) which has been explored sparsely over the region. The results show that ESLM of PF and SHF techniques performed better in estimating ionospheric delay compared to the existing SLM model. Although the performance of the ESLM approach is almost comparable to the SLM results during the quiet ionospheric conditions, the ESLM-PF and ESLMSHF models led to respective improvements of 4.66% and 7.14% over the classically used SLM model under the disturbed ionospheric conditions. In view of the uneven variability of equatorial/low latitude ionosphere above the Indian subcontinental region, the suitability of ESLM-PF and ESLM-SHF models has been emphasized and suggested for assessing its completeness and reliableness across other parts of the globe. The output of this work may be useful for high precession GNSS positioning through mitigating the ionospheric delays under quiet as well as varied ionospheric conditions across the low/equatorial latitude regions.
基金supported by the National Natural Science Foundation of China (42030810,42104115)。
文摘The similarities and differences in inherent mechanism and characteristic frequency between the onedimensional(1D)poroelastic model and the layered White model were investigated.This investigation was conducted under the assumption that the rock was homogenous and isotropic at the mesoscopic scale.For the inherent mechanism,both models resulted from quasi-static flow in a slow P-wave diffusion mode,and the differences between them originated from saturated fluids and boundary conditions.On the other hand,for the characteristic frequencies of the models,the characteristic frequency of the 1D poroelastic model was first modified because the elastic constant and formula for calculating it were misused and then compared to that of the layered White model.Both of them moved towards higher frequencies with increasing permeability and decreasing viscosity and diffusion length.The differences between them were due to the diffusion length.The diffusion length for the 1D poroelastic model was determined by the sample length,whereas that for the layered White model was determined by the length of the representative elementary volume(REV).Subsequently,a numerical example was presented to demonstrate the similarities and differences between the models.Finally,published experimental data were interpreted using the 1D poroelastic model combined with the Cole-Cole model.The prediction of the combined model was in good agreement with the experimental data,thereby validating the effectiveness of the 1D poroelastic model.Furthermore,the modified characteristic frequency in our study was much closer to the experimental data than the previous prediction,validating the effectiveness of our modification of the characteristic frequency of the 1D poroelastic model.The investigation provided insight into the internal relationship between wave-induced fluid flow(WIFF)models at macroscopic and mesoscopic scales and can aid in a better understanding of the elastic modulus dispersion and attenuation caused by the WIFF at different scales.
基金the National Natural Science Foundation of China(Grant Nos.51904025 and U22A20171)the Fundamental Research Funds for the Central Universities(Grant No.FRF-IDRY-20-011)+1 种基金National Postdoctoral Program for Innovative Talents(Grant No.BX20190030)the High Steel Center(HSC)at North China University of Technology and University of Science and Technology Beijing,China.
文摘A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary layer for inclusion removal was proposed by a statistical method.It is noticed that the capture of inclusions by steel-slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions.In high turbulent flow fields,the transport of inclusions is mainly dominated by the turbulent flow,and thus,the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter.The inertia of inclusions gradually takes over the stochastic effect of turbulent flow,and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy.Besides,the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions.As the characteristic velocity increases,the time for inclusions transport and interaction with steel-slag interface decreases,and thus,the effective boundary layer thickness decreases.Moreover,the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of a turbulent fluid flow in the metallurgical vessel.
文摘In this paper, we study the long-time behavior of solutions of the single-layer quasi-geostrophic model arising from geophysical fluid dynamics. We obtain the lower bound of the decay estimate of the solution. Utilizing the Fourier splitting method, under suitable assumptions on the initial data, for any multi-index α, we show that the solution Ψ satisfies .
文摘An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金support from the National Natural Science Foundation of China (No. 50876069)the Ministry of Education of the People’s Republic of China (No.208041)from the Shanghai Municipal Education Commis-sion (No. 07ZZ88)
文摘The optical measurement technique based on Mie scattering has been applied to various areas, in which single scattering at low particle concentration is assumed. Nevertheless, since multiple scattering is usually unavoidable in online measurements, we present in this work a multiple scattering calculation method, in which a layer model is employed. The three-dimensional particle system is divided into a pile of layers the number of which is automatically determined, depending on the obscuration of the particle system. The calculation is found to be fast, reasonable and reliable.
文摘This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.
基金supported by the National Natural Science Foundation of China(10972171)the Program for New Century Excellent Talents in Universities(NCET-08-0429)the National 111 Project(B06024)
文摘A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems, with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer. Dispersion equations are obtained for unelectroded and traction-free upper surfaces which, in the limit, can be reduced to those for classical Love waves. Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation, including its thickness, mass density, dielectric constant and elastic coefficient. It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation, its mass density and dielectric constant have negligible influence. On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface, the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic sub- strate systems. Upon comparing with the predictions ob- tained by employing the traditional shear-lag model, the present three-layer structure model is found to be more ac- curate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model, especially for long waves when the piezoelectric layer is relatively thin.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 40233034, 40575043the Chinese Academy of Sciences (KZCX3_SW_229).
文摘In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing.
文摘Arnol'd's second nonlinear stability criterion for motions governed by a general multilayer quasi-geostrophic model is established. The model allows arbitrary density jumps and layer thickness, and at the top and the bottom of the nuid, the boundary condition is either free or rigid. The criterion is obtained by the establishment of the upper bounds of disturbance energy and potential enstrophy in terms of the initial disturbance field.
基金National Natural Science F oundation of China !( No.91880 10 )National Defense Science Foundation!( 95 J13 A .1.2 )
文摘Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.