The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analy...The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analysis shows that most of the thrusts dip towards the NW so that the Permo-Triassic sediments and Jurassic micro-diorites of the Lut Block overthrusted over the younger rocks.Structural studies show that the tectonic vergence was from the NW to the SE of the Sechengi area in the NW part of Sistan orogen.We recognized three deformation phases in eastern Iran.The first N-S deformation event(D1)resulted in the formation of tight E-W folds(F1)and associated cleavages(S1).The second E-W deformation event(D2),which occurred in the late Paleogene led to the bending of older structures,including the axial plane of the first-generation folds giving them a new northwest direction(F2).Additionally,the ramp of the first-phase thrusts(striking E-W)was reactivated,acquiring a new NNW orientation and exhibiting SSE tectonic vergence.The third deformation event(D3)resulted in the formation of NNE and WNW conjugate faults in eastern Iran.Such consecutive deformation events perpendicular to each other are inconsistent with the models of simple linear orogen presented for eastern Iran(i.e.rifting of eastern Iran continental crust and subsequence linear collision)and seem more consistent with the buckling orogeny(Orocline).展开更多
The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability,...The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.展开更多
In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current...In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flo...The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed.展开更多
The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key...The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.展开更多
Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively so...Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively southward along several generally north-dipping great thrust systems. Those at the borders of the ~450 km wide block show it overrides the Lhasa block to the south and is overridden by the Hohxil-Bayanhar block to the north. The systems are mostly thin-skinned imbricate thrusts with associated folding. The thrust sheets are chiefly floored by Jurassic limestone that apparently slid over Triassic sandstone and shale, which is locally included, and ramped upward and over Paleocene-Eocene red-beds. Some central thrusts scooped deeper and carried up Paleozoic metamorphic rock, Permian carbonate and granite to form a central uplift that divides the Qiangtang block into two parts. These systems and their associated structures are unconformably overlain by little deformed Late Eocene-Oligocene volcanic rock or capped by Miocene lake beds. A thrust system in the northern part of the block, as well as one in the northern part of the adjacent Lhasa block, dip to the south and appear to be due to secondary adjustments within the thrust sheets. The relative southward displacement across this Early Cenozoic mega thrust system is in excess of 150 km in the Qiangtang block, and the average southward slip-rate of the southern Qiangtang thrusts ranged from 5.6 mm to 7.4 mm/a during the Late Eocene-Oligocene. This Early Cenozoic thrusting ended before the Early Miocene and was followed by Late Cenozoic crustal extension and strike-slip faulting within the Qiangtang block. The revelation and understanding of these thrust systems are very important for the evaluation of the petroleum resources of the region.展开更多
A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered ep...A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.展开更多
A huge thrust system, the North Lhasa Thrust (NLT), was discovered in the northern Lhasa block of the Tibetan Plateau based on geological mapping of the Damxung region and its vicinity, the Deqen-Lunpola traverse and ...A huge thrust system, the North Lhasa Thrust (NLT), was discovered in the northern Lhasa block of the Tibetan Plateau based on geological mapping of the Damxung region and its vicinity, the Deqen-Lunpola traverse and the Amdo-Bam Co profile. The NLT consists of the Dongqiao-Lunpola thrust (DLT), the west Namco thrust (WNT) and the south Damxung thrust (SDT) and ductile shear zones, ophiolite slices and folds extending in a WNW direction. Major thrust faults of the NLT seem to merge into a single deep-seated detachment of the upper-crust and totally displaced southward as far as 100-120 km. Chronological analyses with 39Ar-40Ar of plagioclase and hornblende, Rb-Sr isochron of minerals and fission-tracks of apatite from mylonite within the WNT yield ages of 174-173 Ma, 109 Ma and 44 Ma, showing 3 periods of thrusting in the north Lhasa block caused by subduction of the Tethys oceanic plate and the India-Eurasia continental collision respectively.展开更多
Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement met...Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.展开更多
Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The ...Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.展开更多
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) therm...The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.展开更多
The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Ceno...The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic-Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic-Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous-Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed.展开更多
In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. Thi...In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.展开更多
A first-order question in the studies of the Solar System is how its outer zone known as the Kuiper belt was created and evolved.Two end-member models, involving coagulation vs. streaming instability, make different p...A first-order question in the studies of the Solar System is how its outer zone known as the Kuiper belt was created and evolved.Two end-member models, involving coagulation vs. streaming instability, make different predictions-testable by the cratering history of Kuiper Belt Objects(KBOs)-about the cumulative size-frequency distribution(SFD) of the KBOs. Among all of the imaged KBOs, Pluto’s largest icy moon, Charon, appears to preserve the largest size range of seemingly undisturbed craters, their diameters(D) on Charon ranging from < 1 km to > 220 km. Current work shows that Charon’s craters with D < 10-20 km are fewer than those expected by the coagulation mechanism, but whether this is an artifact of post-cratering modification of smaller craters is unknown. We address this issue by conducting systematic photogeological mapping and performing detailed landform analysis using the highest resolution images obtained by the New Horizons spacecraft, which reveal a range of differentiable terrains on Charon. The most important findings of our work include(1) truncation and obliteration of large craters(diameters > 30-40 km) and their crater rim ridges along the eastern edges of several north-trending, eastward-convex, arcuate ranges in Oz Terra of the northern encountered hemisphere,(2) lobate ridges, lobate knob trains, and lobate aprons resembling glacial moraine landforms on Earth,(3) dendritic channel systems containing hanging valleys,and(4) locally striated surfaces defined by parallel ridges, knob trains, and grooves that are > 40-50 km in length. The above observations and the topographic dichotomy of Charon’s encountered hemisphere can be explained by a landscape-evolution model that involves(i)a giant impact that created the Vulcan Planitia basin and the extensional fault zone along its northern rim,(ii) a transient atmosphere capable of driving N2-ice glacial erosion of the water-ice bedrock and transporting water-ice debris to sedimentary basins,(iii) regional glacial erosion and transport of earlier emplaced impact ejecta deposits from the highlands of Oz Terra into the lowland basin of Vulcan Planitia,(iv) syn-glaciation north-trending thrusting, interpreted to have been induced by Charon’s despinning, and(v) the development of a water-ice debris cover layer over subsurface N2 ice below Vulcan Planitia during global deglaciation. The infilling of the Vulcan Planitia could have been accompanied by cryovolcanism. The extensive modification of impact craters means that the size-frequency distributions of Charon’s craters should serve only as a lower bound when used to test formation mechanisms proposed for Kuiper belt objects.展开更多
The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies ...The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.展开更多
Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio...Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.展开更多
With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromag...With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromagnetic thrust of NLS-LM reasonably.Hence,in this paper,one thrust calculation method is proposed considering variable loop inductance and transient loop current.Firstly,to establish the secondary winding function,the modeling domain is confined to a limited range,and the equivalent loop span is employed by analyzing the coupling relationship between primary and secondary.Then,in order to obtain the secondary flux density,the transient secondary current is solved based on the loop impedance and induced voltage.Finally,the electromagnetic thrust can be calculated reasonably by the given primary current sheet and the calculated secondary flux density.Comprehensive simulations and experiments have demonstrated the effectiveness of the proposed method.展开更多
As view from the petrological, mineralogical and petrochemical studies, the Hongzhen granitoid is characterized by the autichthonous-parautochthonous transformation. The source rocks are mainly felsic clastic sediment...As view from the petrological, mineralogical and petrochemical studies, the Hongzhen granitoid is characterized by the autichthonous-parautochthonous transformation. The source rocks are mainly felsic clastic sediments with a small amount of intermediate magmatite in the Zhangbaling Group.The granitoid is covered by mylonite and migmatite, and the three rocks share much in common with respect to their REE distribution pattems and the W-type distribution of transition elements,indicating that they all came from identical souree rocks. The granitoid belongs to collision granites or post-orogenic granitoids resulting from ductile thrusting-shearing under 550℃ and 7 × 108 Pa conditions in the foreland of the Yangtze plate during the Late Indosinian movement, and from metasomatism plus partial melting.展开更多
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr...The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.展开更多
基金financially and technically supported by the University of Birjand under Project Number 7912.
文摘The eastern Iranian range,known as the Sistan suture zone in the past,has recently been identified as the Sistan orogen.This Paleogene orogeny is located between the Lut and Afghan microcontinents.The structural analysis shows that most of the thrusts dip towards the NW so that the Permo-Triassic sediments and Jurassic micro-diorites of the Lut Block overthrusted over the younger rocks.Structural studies show that the tectonic vergence was from the NW to the SE of the Sechengi area in the NW part of Sistan orogen.We recognized three deformation phases in eastern Iran.The first N-S deformation event(D1)resulted in the formation of tight E-W folds(F1)and associated cleavages(S1).The second E-W deformation event(D2),which occurred in the late Paleogene led to the bending of older structures,including the axial plane of the first-generation folds giving them a new northwest direction(F2).Additionally,the ramp of the first-phase thrusts(striking E-W)was reactivated,acquiring a new NNW orientation and exhibiting SSE tectonic vergence.The third deformation event(D3)resulted in the formation of NNE and WNW conjugate faults in eastern Iran.Such consecutive deformation events perpendicular to each other are inconsistent with the models of simple linear orogen presented for eastern Iran(i.e.rifting of eastern Iran continental crust and subsequence linear collision)and seem more consistent with the buckling orogeny(Orocline).
基金supported by Joint Fund for Equipment Preresearch and Aerospace Science and Technology (No. 6141B061203)。
文摘The common propellants used for electric thrusters, such as xenon and krypton, are rare, expensive,and difficult to acquire. Solid iodine attracts much attention with the advantages of low cost,extensive availability, low vapor pressure, and ionization potential. The performance of a lowpower iodine-fed Hall thruster matched with a xenon-fed cathode is investigated across a broad range of operation conditions. Regulation of the iodine vapor's mass flow rates is stably achieved by using a temperature control method of the iodine reservoir. The thrust measurements are finished utilizing a thrust target during the tests. Results show that thrust and anode-specific impulse increase approximately linearly with the increasing iodine mass flow rate.At the nominal power of 200 W class, iodine mass flow rates are 0.62 and 0.93 mg/s, thrusts are7.19 and 7.58 m N, anode specific impulses are 1184 and 826 s, anode efficiencies are 20.8%and 14.5%, and thrust to power ratios are 35.9 and 37.9 m N/k W under the conditions of 250 V,0.8 A and 200 V, 1.0 A, respectively. The operating characteristics of iodine-fed Hall thruster are analyzed in different states. Further work on the measurements of plasma characteristics and experimental optimization will be carried out.
基金funded by the Basic Research on National Defense of China(No.JCKY2021603B033),which is gratefully acknowledged。
文摘In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
文摘The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed.
文摘The role of the rocket attitude control system is to execute the required maneuvers for guidance and ensure the stability of the rocket's flight attitude. Attitude control technology has always been one of the key technologies for ensuring the success of rocket flights and has been a core topic in carrier rocket technology research. The Gravity-1 solid carrier rocket is the first solid rocket bundled rocket developed by China, adopting a configuration with four boosters and a core stage bundled together. During the actual flight process, the four booster engines are ignited first, and then, in the event of insufficient control force from the boosters, the core stage engine is ignited to participate in control. To address thrust asynchrony during the descent of the four boosters, an Extended State Observer(ESO) is employed in the control scheme for this flight segment. This involves real-time estimation and compensation of attitude parameters during flight, identification of thrust asynchrony among the boosters, and simultaneous determination of whether the core stage engine is ignited to participate in control.Through six degrees of freedom simulation analysis and Y1 flight test validation, this method has been proven to be correct and feasible.
基金financially supporting the research under grants No.1212011221111,Sinoprobe-02-01 and 2006DFB21330 respectively
文摘Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively southward along several generally north-dipping great thrust systems. Those at the borders of the ~450 km wide block show it overrides the Lhasa block to the south and is overridden by the Hohxil-Bayanhar block to the north. The systems are mostly thin-skinned imbricate thrusts with associated folding. The thrust sheets are chiefly floored by Jurassic limestone that apparently slid over Triassic sandstone and shale, which is locally included, and ramped upward and over Paleocene-Eocene red-beds. Some central thrusts scooped deeper and carried up Paleozoic metamorphic rock, Permian carbonate and granite to form a central uplift that divides the Qiangtang block into two parts. These systems and their associated structures are unconformably overlain by little deformed Late Eocene-Oligocene volcanic rock or capped by Miocene lake beds. A thrust system in the northern part of the block, as well as one in the northern part of the adjacent Lhasa block, dip to the south and appear to be due to secondary adjustments within the thrust sheets. The relative southward displacement across this Early Cenozoic mega thrust system is in excess of 150 km in the Qiangtang block, and the average southward slip-rate of the southern Qiangtang thrusts ranged from 5.6 mm to 7.4 mm/a during the Late Eocene-Oligocene. This Early Cenozoic thrusting ended before the Early Miocene and was followed by Late Cenozoic crustal extension and strike-slip faulting within the Qiangtang block. The revelation and understanding of these thrust systems are very important for the evaluation of the petroleum resources of the region.
文摘A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.
文摘A huge thrust system, the North Lhasa Thrust (NLT), was discovered in the northern Lhasa block of the Tibetan Plateau based on geological mapping of the Damxung region and its vicinity, the Deqen-Lunpola traverse and the Amdo-Bam Co profile. The NLT consists of the Dongqiao-Lunpola thrust (DLT), the west Namco thrust (WNT) and the south Damxung thrust (SDT) and ductile shear zones, ophiolite slices and folds extending in a WNW direction. Major thrust faults of the NLT seem to merge into a single deep-seated detachment of the upper-crust and totally displaced southward as far as 100-120 km. Chronological analyses with 39Ar-40Ar of plagioclase and hornblende, Rb-Sr isochron of minerals and fission-tracks of apatite from mylonite within the WNT yield ages of 174-173 Ma, 109 Ma and 44 Ma, showing 3 periods of thrusting in the north Lhasa block caused by subduction of the Tethys oceanic plate and the India-Eurasia continental collision respectively.
基金This study was supported by the National Natural Science Foundation of China grants 49772119 and 49732080.
文摘Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.
文摘Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.
基金supported by the National Natural Science Foundation of China (Grants No. 41572102, 41330315, 41102067, and 41172127)China Geological Survey project (Grant No. 121201011000161111-02)
文摘The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.
基金financially supported by the National Science and Technology Major Project (No.2011ZX05008-001)the Natural Science Foundation of China (No.40739906)the Chinese State 973 Project(No. 2011CB201100)
文摘The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic-Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic-Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous-Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed.
文摘In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.
文摘A first-order question in the studies of the Solar System is how its outer zone known as the Kuiper belt was created and evolved.Two end-member models, involving coagulation vs. streaming instability, make different predictions-testable by the cratering history of Kuiper Belt Objects(KBOs)-about the cumulative size-frequency distribution(SFD) of the KBOs. Among all of the imaged KBOs, Pluto’s largest icy moon, Charon, appears to preserve the largest size range of seemingly undisturbed craters, their diameters(D) on Charon ranging from < 1 km to > 220 km. Current work shows that Charon’s craters with D < 10-20 km are fewer than those expected by the coagulation mechanism, but whether this is an artifact of post-cratering modification of smaller craters is unknown. We address this issue by conducting systematic photogeological mapping and performing detailed landform analysis using the highest resolution images obtained by the New Horizons spacecraft, which reveal a range of differentiable terrains on Charon. The most important findings of our work include(1) truncation and obliteration of large craters(diameters > 30-40 km) and their crater rim ridges along the eastern edges of several north-trending, eastward-convex, arcuate ranges in Oz Terra of the northern encountered hemisphere,(2) lobate ridges, lobate knob trains, and lobate aprons resembling glacial moraine landforms on Earth,(3) dendritic channel systems containing hanging valleys,and(4) locally striated surfaces defined by parallel ridges, knob trains, and grooves that are > 40-50 km in length. The above observations and the topographic dichotomy of Charon’s encountered hemisphere can be explained by a landscape-evolution model that involves(i)a giant impact that created the Vulcan Planitia basin and the extensional fault zone along its northern rim,(ii) a transient atmosphere capable of driving N2-ice glacial erosion of the water-ice bedrock and transporting water-ice debris to sedimentary basins,(iii) regional glacial erosion and transport of earlier emplaced impact ejecta deposits from the highlands of Oz Terra into the lowland basin of Vulcan Planitia,(iv) syn-glaciation north-trending thrusting, interpreted to have been induced by Charon’s despinning, and(v) the development of a water-ice debris cover layer over subsurface N2 ice below Vulcan Planitia during global deglaciation. The infilling of the Vulcan Planitia could have been accompanied by cryovolcanism. The extensive modification of impact craters means that the size-frequency distributions of Charon’s craters should serve only as a lower bound when used to test formation mechanisms proposed for Kuiper belt objects.
基金financially supported by the China Geological Survey(Grant Nos.DD20230229,DD20160083,DD20190011,DD20221643-5)the National Key Research and Development Program of China(the DREAM—Deep Resource Exploration and Advanced Mining+1 种基金Grant No.2018YFC0603701)the Cooperative Project between the Chinese Academy of Geological Sciences and the Sinopec Shengli Oilfield Company(Grant No.P22065)。
文摘The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.
基金Supported by the National Natural Science Foundation of China (41902118)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B141)+1 种基金Natural Science Foundation of Heilongjiang Province (LH2021D003)Heilongjiang Postdoctoral Fund (No.LBH-Z20045)。
文摘Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.
基金supported in part by the National Natural Science Foundation of China under Grants 52277050the Shenzhen International Collaboration under Grant GJHZ20210705142539007。
文摘With advantages of strong drive capability,nested-loop secondary linear machine(NLS-LM)has great potentiality in linear metro.For its secondary structure with multiple loops,it is difficult to calculate the electromagnetic thrust of NLS-LM reasonably.Hence,in this paper,one thrust calculation method is proposed considering variable loop inductance and transient loop current.Firstly,to establish the secondary winding function,the modeling domain is confined to a limited range,and the equivalent loop span is employed by analyzing the coupling relationship between primary and secondary.Then,in order to obtain the secondary flux density,the transient secondary current is solved based on the loop impedance and induced voltage.Finally,the electromagnetic thrust can be calculated reasonably by the given primary current sheet and the calculated secondary flux density.Comprehensive simulations and experiments have demonstrated the effectiveness of the proposed method.
文摘As view from the petrological, mineralogical and petrochemical studies, the Hongzhen granitoid is characterized by the autichthonous-parautochthonous transformation. The source rocks are mainly felsic clastic sediments with a small amount of intermediate magmatite in the Zhangbaling Group.The granitoid is covered by mylonite and migmatite, and the three rocks share much in common with respect to their REE distribution pattems and the W-type distribution of transition elements,indicating that they all came from identical souree rocks. The granitoid belongs to collision granites or post-orogenic granitoids resulting from ductile thrusting-shearing under 550℃ and 7 × 108 Pa conditions in the foreland of the Yangtze plate during the Late Indosinian movement, and from metasomatism plus partial melting.
基金the Key Laboratory Funds for Science and Technology on Vacuum Technology and Physics Laboratory(No.HTKJ2022KL510002)the Military Test Instruments Program(No.2006ZCTF0054)。
文摘The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.