In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show...In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.展开更多
At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this met...At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.展开更多
While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADB...Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to reali...The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to realize the rapid calculation of data on aircraft or in orbit,which will improve the timeliness of oil spill emergency monitoring.At the same time,the combination of spectral and spatial features can improve the accuracy of oil spill monitoring.Two ground-based experiments were designed to collect measured airborne hyperspectral data of crude oil and its emulsions,for which the multiscale superpixel level group clustering framework(MSGCF)was used to select spectral feature bands with strong separability.In addition,the double-branch dual-attention(DBDA)model was applied to identify crude oil and its emulsions.Compared with the recognition results based on original hyperspectral images,using the feature bands determined by MSGCF improved the recognition accuracy,and greatly shortened the running time.Moreover,the characteristic bands for quantifying the volume concentration of water-in-oil emulsions were determined,and a quantitative inversion model was constructed and applied to the AVIRIS image of the deepwater horizon oil spill event in 2010.This study verified the effectiveness of feature bands in identifying oil spill pollution types and quantifying concentration,laying foundation for rapid identification and quantification of marine oil spills and their emulsions on aircraft or in orbit.展开更多
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leak...Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leakage.For this reason,this paper discusses the standards for cybersecurity protection,examines the current state of cybersecurity management and the risks faced by cloud platforms,expands the time and space for training on cloud platforms,and provides recommendations for measuring the level of cybersecurity protection within cloud platforms in order to build a solid foundation for them.展开更多
Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This impo...Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.展开更多
The availability of many high-degree Global Geopotential Models(GGMs), namely EGM2008, EIGEN-6C4,GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This...The availability of many high-degree Global Geopotential Models(GGMs), namely EGM2008, EIGEN-6C4,GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This study, therefore, evaluates their performance by comparing them with GNSS/leveling data over Vietnam. Results show that their absolute and relative performances are largely independent of topographic conditions and geographical location and can be ranked into three classes:(1)XGM2019e_2159 has the highest accuracy,(2) the models EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus, have a very similar level of medium accuracy, while(3) EGM2008 is found to be the least accurate. In an absolute sense, the differences between GNSS/leveling and EGM2008-based height anomalies have a standard deviation(STD) of 0.290 ± 0.010 m, whereas, for XGM2019e_2159, this is 0.156 ± 0.006 m.All other models have STDs of(0.18-0.19) ± 0.007 m. Regarding relative performance without fitting, all GGMs have comparable accuracies for baseline length of 5-20 km, while for baselines longer than 20 km,the STD of XGM2019e_2159 is 1.5 ppm-0.5 ppm(approximately 19%-40%) lower compared with EGM2008, and 0.5 ppm-0.25 ppm(approximately 7%-36%) lower compared with EIGEN6C4, GECO,SGG-UGM-1, SGG-UGM-2, and GGMPlus. In addition, the STDs decrease significantly from 20 to 12 ppm in the range of 5-10 km, slightly from 12 to 6 ppm for 10-35 km, very slightly from 6 to 2.5 ppm for35-200 km, and then remain almost unchanged for longer baselines. After fitting, the relative accuracies of all GGMs are at the same level with negligible STD/RMSE values. Furthermore, only EGM2008 experiences significant regional differences, while other GGMs show more homogeneous spatial variation of absolute accuracy over Vietnam. These findings can contribute to the development of local quasigeoid models in Vietnam and may be helpful with the improvement of GGMs in the future.展开更多
A method is proposed to fuse the velocity data of the global navigation satellite system(GNSS) and leveling height via combined adjustment with constraints. First, stable GNSS-leveling points are uniformly selected, a...A method is proposed to fuse the velocity data of the global navigation satellite system(GNSS) and leveling height via combined adjustment with constraints. First, stable GNSS-leveling points are uniformly selected, and the constraints of the geodetic height change velocity and normal height change velocity are given. Then, the GNSS vertical velocities and leveling height difference are used as observations of combined adjustment, and robust least-squares estimation are used to estimate the velocities of the unknown points. Finally, a vertical movement model is established with the GNSS vertical velocities and leveling vertical velocities obtained via combined adjustment. Data from the second-order leveling network and GNSS control points in Shandong Province are taken as test data, and eight calculation schemes are used for discussion. One of the schemes, the bifactor robust combined adjustment method based on variance component estimation with two kinds of vertical velocity constraints achieves the optimal results. The method applied in the scheme can be recommended for data fusion of GNSS and leveling, further improving the reliability of vertical crustal movement in Shandong Province.展开更多
Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Grav...Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Gravity Anomaly(BGA)map of WGM2012,the feasibility of replacing in-situ gravity surveying in China is investigated.For leveling application,that is to evaluate the accuracy of WGM2012 in China.Because WGM2012 is organized with a standard rectangle grid,two interpolation methods,bilinear interpolating and Inverse Distance Weighted(IDW)interpolating,are proposed.Four sample areas in China,i.e.,Hanzhong,Chengdu,Linzhi and Shantou,are selected to evaluate the systems bias and precision of WGM2012.Numerical results show the average system bias of WGM2012 BGA in west China is about-100.1 mGal(1 mGal=10^(-5) m/s^(2))and the standard deviation is about 30.7 mGal.Tests in Shantou indicate the system bias in plain areas is about-130.4 mGal and standard deviation is about 6.8 mGal.All these experiments means the accuracy of WGM2012 is limited in high mountain areas of western China,but in plain areas,such as Shantou,WGM2012 BGA map is quite good for most leveling applications after calibrating the system bias.展开更多
Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed ...Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed model uses a real time dataset offifteen Stocks as input into the system and based on the data,predicts or forecast future stock prices of different companies belonging to different sectors.The dataset includes approximatelyfifteen companies from different sectors and forecasts their results based on which the user can decide whether to invest in the particular company or not;the forecasting is done for the next quarter.Our model uses 3 main concepts for forecasting results.Thefirst one is for stocks that show periodic change throughout the season,the‘Holt-Winters Triple Exponential Smoothing’.3 basic things taken into conclusion by this algorithm are Base Level,Trend Level and Seasoning Factor.The value of all these are calculated by us and then decomposition of all these factors is done by the Holt-Winters Algorithm.The second concept is‘Recurrent Neural Network’.The specific model of recurrent neural network that is being used is Long-Short Term Memory and it’s the same as the Normal Neural Network,the only difference is that each intermediate cell is a memory cell and retails its value till the next feedback loop.The third concept is Recommendation System whichfilters and predict the rating based on the different factors.展开更多
The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly fo...The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.展开更多
In this study,the research progress of trenchless piping technology for pipes with a large diameter was reviewed.The geological conditions of the sandbar in Xiangyang were taken into account in this study.This paper h...In this study,the research progress of trenchless piping technology for pipes with a large diameter was reviewed.The geological conditions of the sandbar in Xiangyang were taken into account in this study.This paper highlights the construction process management of the pipeline network project in Yuliangzhou Starting Area of Xiangyang City.Research was carried out in the aspects of optimizing mud ratio,controlling pipeline elevations,pipeline welding,and trenchless pipeline construction in limited spaces,stable support during pit excavation,and controlling the spacing between the junctions of two pipe segments.The research resulted in excellent outcomes and ensured safe construction,and the quality requirements were also met.展开更多
Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy....Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.展开更多
基金National Natural Science Foundation of China(No.41661091)。
文摘In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.
基金the International Center for Global Earth Models(ICGEM)for the height anomaly and gravity anomaly data and Bureau Gravimetrique International(BGI)for free-air gravity anomaly data from the World Gravity Map project(WGM2012)The authors are grateful to Głowny Urza˛d Geodezji i Kartografii of Poland for the height anomaly data of the quasi-geoid PL-geoid2021.
文摘At present,one of the methods used to determine the height of points on the Earth’s surface is Global Navigation Satellite System(GNSS)leveling.It is possible to determine the orthometric or normal height by this method only if there is a geoid or quasi-geoid height model available.This paper proposes the methodology for local correction of the heights of high-order global geoid models such as EGM08,EIGEN-6C4,GECO,and XGM2019e_2159.This methodology was tested in different areas of the research field,covering various relief forms.The dependence of the change in corrected height accuracy on the input data was analyzed,and the correction was also conducted for model heights in three tidal systems:"tide free","mean tide",and"zero tide".The results show that the heights of EIGEN-6C4 model can be corrected with an accuracy of up to 1 cm for flat and foothill terrains with the dimensionality of 1°×1°,2°×2°,and 3°×3°.The EGM08 model presents an almost identical result.The EIGEN-6C4 model is best suited for mountainous relief and provides an accuracy of 1.5 cm on the 1°×1°area.The height correction accuracy of GECO and XGM2019e_2159 models is slightly poor,which has fuzziness in terms of numerical fluctuation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
基金supported by the National Natural Science Foundation of China (22279063 and 52001170)the Fundamental Research Funds for the Central Universities+2 种基金Tianjin Natural Science Foundation (No. 22JCYBJC00590)the financial support by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 Thematic (RT8/22)the Haihe Laboratory of Sustainable Chemical Transformations, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) for financial support
文摘Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
基金Supported by the National Natural Science Foundation of China(Nos.42206177,U1906217)the Shandong Provincial Natural Science Foundation(No.ZR2022QD075)the Fundamental Research Funds for the Central Universities(No.21CX06057A)。
文摘The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to realize the rapid calculation of data on aircraft or in orbit,which will improve the timeliness of oil spill emergency monitoring.At the same time,the combination of spectral and spatial features can improve the accuracy of oil spill monitoring.Two ground-based experiments were designed to collect measured airborne hyperspectral data of crude oil and its emulsions,for which the multiscale superpixel level group clustering framework(MSGCF)was used to select spectral feature bands with strong separability.In addition,the double-branch dual-attention(DBDA)model was applied to identify crude oil and its emulsions.Compared with the recognition results based on original hyperspectral images,using the feature bands determined by MSGCF improved the recognition accuracy,and greatly shortened the running time.Moreover,the characteristic bands for quantifying the volume concentration of water-in-oil emulsions were determined,and a quantitative inversion model was constructed and applied to the AVIRIS image of the deepwater horizon oil spill event in 2010.This study verified the effectiveness of feature bands in identifying oil spill pollution types and quantifying concentration,laying foundation for rapid identification and quantification of marine oil spills and their emulsions on aircraft or in orbit.
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
文摘Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leakage.For this reason,this paper discusses the standards for cybersecurity protection,examines the current state of cybersecurity management and the risks faced by cloud platforms,expands the time and space for training on cloud platforms,and provides recommendations for measuring the level of cybersecurity protection within cloud platforms in order to build a solid foundation for them.
文摘Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.
文摘The availability of many high-degree Global Geopotential Models(GGMs), namely EGM2008, EIGEN-6C4,GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This study, therefore, evaluates their performance by comparing them with GNSS/leveling data over Vietnam. Results show that their absolute and relative performances are largely independent of topographic conditions and geographical location and can be ranked into three classes:(1)XGM2019e_2159 has the highest accuracy,(2) the models EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus, have a very similar level of medium accuracy, while(3) EGM2008 is found to be the least accurate. In an absolute sense, the differences between GNSS/leveling and EGM2008-based height anomalies have a standard deviation(STD) of 0.290 ± 0.010 m, whereas, for XGM2019e_2159, this is 0.156 ± 0.006 m.All other models have STDs of(0.18-0.19) ± 0.007 m. Regarding relative performance without fitting, all GGMs have comparable accuracies for baseline length of 5-20 km, while for baselines longer than 20 km,the STD of XGM2019e_2159 is 1.5 ppm-0.5 ppm(approximately 19%-40%) lower compared with EGM2008, and 0.5 ppm-0.25 ppm(approximately 7%-36%) lower compared with EIGEN6C4, GECO,SGG-UGM-1, SGG-UGM-2, and GGMPlus. In addition, the STDs decrease significantly from 20 to 12 ppm in the range of 5-10 km, slightly from 12 to 6 ppm for 10-35 km, very slightly from 6 to 2.5 ppm for35-200 km, and then remain almost unchanged for longer baselines. After fitting, the relative accuracies of all GGMs are at the same level with negligible STD/RMSE values. Furthermore, only EGM2008 experiences significant regional differences, while other GGMs show more homogeneous spatial variation of absolute accuracy over Vietnam. These findings can contribute to the development of local quasigeoid models in Vietnam and may be helpful with the improvement of GGMs in the future.
基金supported by the National Natural Science Foundation of China(41774004,41904040)the Technological Innovation of SHASG(SCK2020-11).
文摘A method is proposed to fuse the velocity data of the global navigation satellite system(GNSS) and leveling height via combined adjustment with constraints. First, stable GNSS-leveling points are uniformly selected, and the constraints of the geodetic height change velocity and normal height change velocity are given. Then, the GNSS vertical velocities and leveling height difference are used as observations of combined adjustment, and robust least-squares estimation are used to estimate the velocities of the unknown points. Finally, a vertical movement model is established with the GNSS vertical velocities and leveling vertical velocities obtained via combined adjustment. Data from the second-order leveling network and GNSS control points in Shandong Province are taken as test data, and eight calculation schemes are used for discussion. One of the schemes, the bifactor robust combined adjustment method based on variance component estimation with two kinds of vertical velocity constraints achieves the optimal results. The method applied in the scheme can be recommended for data fusion of GNSS and leveling, further improving the reliability of vertical crustal movement in Shandong Province.
基金“Wings of Quality”Program of QICS(No.2020-zlzy-015)。
文摘Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Gravity Anomaly(BGA)map of WGM2012,the feasibility of replacing in-situ gravity surveying in China is investigated.For leveling application,that is to evaluate the accuracy of WGM2012 in China.Because WGM2012 is organized with a standard rectangle grid,two interpolation methods,bilinear interpolating and Inverse Distance Weighted(IDW)interpolating,are proposed.Four sample areas in China,i.e.,Hanzhong,Chengdu,Linzhi and Shantou,are selected to evaluate the systems bias and precision of WGM2012.Numerical results show the average system bias of WGM2012 BGA in west China is about-100.1 mGal(1 mGal=10^(-5) m/s^(2))and the standard deviation is about 30.7 mGal.Tests in Shantou indicate the system bias in plain areas is about-130.4 mGal and standard deviation is about 6.8 mGal.All these experiments means the accuracy of WGM2012 is limited in high mountain areas of western China,but in plain areas,such as Shantou,WGM2012 BGA map is quite good for most leveling applications after calibrating the system bias.
文摘Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed model uses a real time dataset offifteen Stocks as input into the system and based on the data,predicts or forecast future stock prices of different companies belonging to different sectors.The dataset includes approximatelyfifteen companies from different sectors and forecasts their results based on which the user can decide whether to invest in the particular company or not;the forecasting is done for the next quarter.Our model uses 3 main concepts for forecasting results.Thefirst one is for stocks that show periodic change throughout the season,the‘Holt-Winters Triple Exponential Smoothing’.3 basic things taken into conclusion by this algorithm are Base Level,Trend Level and Seasoning Factor.The value of all these are calculated by us and then decomposition of all these factors is done by the Holt-Winters Algorithm.The second concept is‘Recurrent Neural Network’.The specific model of recurrent neural network that is being used is Long-Short Term Memory and it’s the same as the Normal Neural Network,the only difference is that each intermediate cell is a memory cell and retails its value till the next feedback loop.The third concept is Recommendation System whichfilters and predict the rating based on the different factors.
文摘The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.
文摘In this study,the research progress of trenchless piping technology for pipes with a large diameter was reviewed.The geological conditions of the sandbar in Xiangyang were taken into account in this study.This paper highlights the construction process management of the pipeline network project in Yuliangzhou Starting Area of Xiangyang City.Research was carried out in the aspects of optimizing mud ratio,controlling pipeline elevations,pipeline welding,and trenchless pipeline construction in limited spaces,stable support during pit excavation,and controlling the spacing between the junctions of two pipe segments.The research resulted in excellent outcomes and ensured safe construction,and the quality requirements were also met.
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories”。
文摘Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.