The symmetry of the rotation-vibration spectra for linear triatomic molecules is described by means of the poop U(5). The rotation-vibration levels of linear triatomic molecules HCN and COS are calculated The infrared...The symmetry of the rotation-vibration spectra for linear triatomic molecules is described by means of the poop U(5). The rotation-vibration levels of linear triatomic molecules HCN and COS are calculated The infrared absorption line intensities are calculated for the molecule COS. The results are in good agreement with the experimental values.展开更多
We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the sim...We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the simulation reveal that NSDI yield strongly connected with the relative phase. The trajectory tracking method shows that the return time of the electron is controlled by the relative phase. In addition, when we change the CRTC laser wavelengths, the relative phase of the maximum and minimum yield of NSDI also changes. This shows that the influence of the Coulomb potential in the triatomic molecules on the electron return process cannot be ignored. This work will effectively promote the electronic dynamics study of NSDI for the triatomic molecule.展开更多
Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent S...Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent SchrSdinger equation numerically in different rotational state are calculated and the results show that the degree of alignment strongly depends on the initial rotational state. Thus, the present study indicates that, for obtaining a high degree of alignment for molecules, appropriate selection of molecular rotational states is necessary.展开更多
文摘The symmetry of the rotation-vibration spectra for linear triatomic molecules is described by means of the poop U(5). The rotation-vibration levels of linear triatomic molecules HCN and COS are calculated The infrared absorption line intensities are calculated for the molecule COS. The results are in good agreement with the experimental values.
基金supported by the Natural Science Foundation of Shanghai (Grant No. 18ZR1413600)。
文摘We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the simulation reveal that NSDI yield strongly connected with the relative phase. The trajectory tracking method shows that the return time of the electron is controlled by the relative phase. In addition, when we change the CRTC laser wavelengths, the relative phase of the maximum and minimum yield of NSDI also changes. This shows that the influence of the Coulomb potential in the triatomic molecules on the electron return process cannot be ignored. This work will effectively promote the electronic dynamics study of NSDI for the triatomic molecule.
基金The work was supported by the National Basic Research Program of China (973 Program) under grant No. 2013CB922200 and the National Natural Science Foundation of China under grant Nos. 11034003 and 11127403.
文摘Nonadiabatic alignment by intense nonresonant the spatial direction of molecules: By solving the the degree of alignment of the molecules initially laser fields is a versatile technique to manipulate time-dependent SchrSdinger equation numerically in different rotational state are calculated and the results show that the degree of alignment strongly depends on the initial rotational state. Thus, the present study indicates that, for obtaining a high degree of alignment for molecules, appropriate selection of molecular rotational states is necessary.