In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,...In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.展开更多
Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological...Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method.展开更多
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro...This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.展开更多
Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,...Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.展开更多
This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction bet...This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr...The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.展开更多
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba...The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.展开更多
Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume ch...Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume changes during lithium deposition/stripping processes lead to sustained accumulation of inactive lithium and poor cycling reversibility.Quantifying the formation and evolution of inactive lithium under different conditions and fully evaluating the complex failure modes are the key issues in this challenging field.This article comprehensively reviews recent research progress on the quantification of formation and evolution of inactive lithium detected by different quantitative techniques in rechargeable lithium metal batteries.The key research challenges such as failure mechanism,modification strategies and operando characterization of lithium metal anodes are systematically summarized and prospected.This review provides a new angle of view to understand failure mechanism of lithium metal anodes and inspiration and guidance for the future development of rechargeable lithium metal batteries.展开更多
At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical...At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-...Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.展开更多
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat...This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.展开更多
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c...The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.展开更多
Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batter...Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries.展开更多
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi...Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.展开更多
Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on th...Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.展开更多
Lithium-sulfur(Li-S) batteries are promising for high energy-storage applications but suffer from sluggish conversion reaction kinetics and substantial lithium sulfide(Li_(2)S) oxidation barrier,especially under high ...Lithium-sulfur(Li-S) batteries are promising for high energy-storage applications but suffer from sluggish conversion reaction kinetics and substantial lithium sulfide(Li_(2)S) oxidation barrier,especially under high sulfur loadings.Here,we report a Li cation-doped tungsten oxide(Li_(x)WO_(x)) electrocatalyst that efficiently accelerates the S■HLi_(2)S interconversion kinetics.The incorporation of Li dopants into WO_(x) cationic vacancies enables bidirectional electrocatalytic activity for both polysulfide reduction and Li_(2)S oxidation,along with enhanced Li^(+) diffusion.In conjunction with theoretical calculations,it is discovered that the improved electrocatalytic activity originates from the Li dopant-induced geometric and electronic structural optimization of the Li_(x)WO_(x),which promotes the anchoring of sulfur species at favourable adsorption sites while facilitating the charge transfer kinetics.Consequently,Li-S cells with the Li_(x)WO_(x) bidirectional electrocatalyst show stable cycling performance and high sulfur utilization under high sulfur loadings.Our approach provides insights into cation engineering as an effective electrocatalyst design strategy for advancing high-performance Li-S batteries.展开更多
All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,s...All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.展开更多
The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ...The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.展开更多
基金supported by the Russian Science Foundation as part of joint project of RSF-NSFC no.21-43-00006“Polysulfide IonSolvent Complexes and Their Electrochemical Behavior in Lithium-Sulfur Batteries”with the National Natural Science Foundation of China(22061132002)。
文摘In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.
基金the Horizon Europe Project“Batteries reuse and direct production of high performances cathodic and anodic materials and other raw materials from batteries recycling using low cost and environmentally friendly technologies” (RHINOCEROS project,grant no.101069685)。
文摘Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method.
基金Fiscal Year 2023-2024 High-Level and Growth Research and Development Subsidy for supporting the research and development activities for small and medium-size enterprise(SMEs),which is administered by Chiba Industry Advancement Center(Grant No.2066 and 2027)。
文摘This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.
基金the Basic Research Project(C123000,C210200,C310200,&C421000)of the Korea Basic Science Institute(KBSI)funded by the Korea Ministry of Science and ICT(MSIT)the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea(NRF)funded by MSIT(NRF-2021M1A2A2038141).O.H.Han thanks to Prof.I.S.Yang at Ewha Womans University for insightful discussion.
文摘Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.
文摘This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金National Research Foundation,Grant/Award Numbers:NRF‐2018R1A5A1025594,NRF‐2022M3J1A1062644。
文摘The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.
基金This work is supported by the Technologies R&D Program of Huzhou City(No.2022JB01)the Key Research and Development Program of Zhejiang Province(No.2023C01127)the Highstar Corporation HSD20210118.
文摘The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.
基金financially supported by the National Key R&D Program of China, Grant No. 2021YFB2401800
文摘Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume changes during lithium deposition/stripping processes lead to sustained accumulation of inactive lithium and poor cycling reversibility.Quantifying the formation and evolution of inactive lithium under different conditions and fully evaluating the complex failure modes are the key issues in this challenging field.This article comprehensively reviews recent research progress on the quantification of formation and evolution of inactive lithium detected by different quantitative techniques in rechargeable lithium metal batteries.The key research challenges such as failure mechanism,modification strategies and operando characterization of lithium metal anodes are systematically summarized and prospected.This review provides a new angle of view to understand failure mechanism of lithium metal anodes and inspiration and guidance for the future development of rechargeable lithium metal batteries.
基金supported by National Natural Science Foundation of China(21701083).
文摘At present,commercial Li-ion batteries are hardly to satisfy the growing demand for high energy density,for this purpose,lithium metal batteries have attracted worldwide attention in recent years.However,its practical applications are hindered by the formation of Li dendrites and volume effect during Li plating/stripping process,which leads to a lot of safety hazards.Herein,we first employed MOF-derived V_(2)O_(5) nanoparticles to decorate the carbon fiber cloth(CFC)backbone to acquire a lithiophilic 3D porous conductive framework(CFC@V_(2)O_(5)).Subsequently,the CFC@V_(2)O_(5) skeleton was permeated with molten Li to prepare CFC@V_(2)O_(5)@Li composite anode.The CFC@V_(2)O_(5)@Li composite anode can be stably cycled for more than 1650 h at high current density(5 mA·cm^(-2))and areal capacity(5 mA·h·cm^(–2)).The prepared full cell can initially maintain a high capacity of about 143 mA·h·g^(-1) even at a high current density of 5 C,and can still maintain 114 mA·h·g^(-1) after 1000 cycles.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China,Grant/Award Number:22KJB150004Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200047+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:22209062,22222902Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China,Grant/Award Number:JSTJ-2022-023。
文摘Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.
基金funded by the National Key Research and Development Program of China(no.2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Basic Research Project(no.JCYJ20190808145203535).
文摘This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
基金the Technology Innovation Program(or Industrial Strategic Technology Development Program)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20022950)。
文摘The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.
基金supported by the National Natural Science Foundation of China(22379121)Shenzhen Foundation Research Program(JCYJ20220530112812028)+1 种基金Fundamental Research Funds for the Central Universities(G2022KY0606)Zhejiang Province Key Laboratory of Flexible Electronics Open Fund(2023FE005)。
文摘Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries.
基金financial support from the Swiss National Science Foundation via the Southeast Asia–Europe Joint Funding Scheme 2020(Grant No.IZJFZ2_202476)funding from the National Natural Science Foundation of China(Grant Nos.22209118 and 00301054A1073)the Fundamental Research Funds for the Central Universities(Grant Nos.1082204112A26,20826044D3083,and 20822041G4080)。
文摘Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.
基金supported by the National Natural Scientific Foundation of China (22109083,22379014)Beijing Natural Science Foundation (L233004)。
文摘Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.
基金financially Australian Research Council (DE210101157 and FT190100058)。
文摘Lithium-sulfur(Li-S) batteries are promising for high energy-storage applications but suffer from sluggish conversion reaction kinetics and substantial lithium sulfide(Li_(2)S) oxidation barrier,especially under high sulfur loadings.Here,we report a Li cation-doped tungsten oxide(Li_(x)WO_(x)) electrocatalyst that efficiently accelerates the S■HLi_(2)S interconversion kinetics.The incorporation of Li dopants into WO_(x) cationic vacancies enables bidirectional electrocatalytic activity for both polysulfide reduction and Li_(2)S oxidation,along with enhanced Li^(+) diffusion.In conjunction with theoretical calculations,it is discovered that the improved electrocatalytic activity originates from the Li dopant-induced geometric and electronic structural optimization of the Li_(x)WO_(x),which promotes the anchoring of sulfur species at favourable adsorption sites while facilitating the charge transfer kinetics.Consequently,Li-S cells with the Li_(x)WO_(x) bidirectional electrocatalyst show stable cycling performance and high sulfur utilization under high sulfur loadings.Our approach provides insights into cation engineering as an effective electrocatalyst design strategy for advancing high-performance Li-S batteries.
基金supported by the National Key Research and Development Program of China(No.2018YFE0111600)the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202307)for financial support。
文摘All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.
基金Fund of University of South China (201RGC013 and 200XQD052)。
文摘The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.