The significant overhead related to frequent location updates from moving objects often results in poor performance. As most of the location updates do not affect the query results, the network bandwidth and the batte...The significant overhead related to frequent location updates from moving objects often results in poor performance. As most of the location updates do not affect the query results, the network bandwidth and the battery life of moving objects are wasted. Existing solutions propose lazy updates, but such techniques generally avoid only a small fraction of all unnecessary location updates because of their basic approach (e.g., safe regions, time or distance thresholds). Furthermore, most prior work focuses on a simplified scenario where queries are either static or rarely change their positions. In this study, two novel efficient location update strategies are proposed in a trajectory movement model and an arbitrary movement model, respectively. The first strategy for a trajectory movement environment is the Adaptive Safe Region (ASR) technique that retrieves an adjustable safe region which is continuously reconciled with the surrounding dynamic queries. The communication overhead is reduced in a highly dynamic environment where both queries and data objects change their positions frequently. In addition, we design a framework that supports multiple query types (e.g., range and c-kNN queries). In this framework, our query re-evaluation algorithms take advantage of ASRs and issue location probes only to the affected data objects, without flooding the system with many unnecessary location update requests. The second proposed strategy for an arbitrary movement environment is the Partition-based Lazy Update (PLU, for short) algorithm that elevates this idea further by adopting Location Information Tables (LITs) which (a) allow each moving object to estimate possible query movements and issue a location update only when it may affect any query results and (b) enable smart server probing that results in fewer messages. We first define the data structure of an LIT which is essentially packed with a set of surrounding query locations across the terrain and discuss the mobile-side and server-side processes in correspondence to the utilization of LITs. Simulation results confirm that both the ASR and PLU concepts improve scalability and efficiency over existing methods.展开更多
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o...In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.展开更多
For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle s...For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.展开更多
Hierarchical mobility management is sensitive to the failure of gateway mobility agents and prone to degrade performance on heavy loads. This paper proposes a distributed and adaptive location management scheme based ...Hierarchical mobility management is sensitive to the failure of gateway mobility agents and prone to degrade performance on heavy loads. This paper proposes a distributed and adaptive location management scheme based on Hierarchical Mobile IPv6. This scheme can balance the loads of mobility anchor points and increase the robustness of the hierarchical structure to certain extents. In this scheme, the optimized IP paging scheme is adopted to reduce the paging signaling cost and improve the scalability of the hierarchical mobility management. We implement the distributed and adaptive location management scheme in a simulation platform and compare its performance with that of two other location management schemes. Our simulation results show that our scheme is capable of balancing the signaling and traffic loads of mobility ancher points, decreasing the average handover latency, and increasing the throughout of the visited networks.展开更多
基金supported by NSF of USA under Grant Nos. IIS-0534761, CNS-0831502, CNS-0855251NUS AcRF under GrantNo. WBS R-252-050-280-101/133
文摘The significant overhead related to frequent location updates from moving objects often results in poor performance. As most of the location updates do not affect the query results, the network bandwidth and the battery life of moving objects are wasted. Existing solutions propose lazy updates, but such techniques generally avoid only a small fraction of all unnecessary location updates because of their basic approach (e.g., safe regions, time or distance thresholds). Furthermore, most prior work focuses on a simplified scenario where queries are either static or rarely change their positions. In this study, two novel efficient location update strategies are proposed in a trajectory movement model and an arbitrary movement model, respectively. The first strategy for a trajectory movement environment is the Adaptive Safe Region (ASR) technique that retrieves an adjustable safe region which is continuously reconciled with the surrounding dynamic queries. The communication overhead is reduced in a highly dynamic environment where both queries and data objects change their positions frequently. In addition, we design a framework that supports multiple query types (e.g., range and c-kNN queries). In this framework, our query re-evaluation algorithms take advantage of ASRs and issue location probes only to the affected data objects, without flooding the system with many unnecessary location update requests. The second proposed strategy for an arbitrary movement environment is the Partition-based Lazy Update (PLU, for short) algorithm that elevates this idea further by adopting Location Information Tables (LITs) which (a) allow each moving object to estimate possible query movements and issue a location update only when it may affect any query results and (b) enable smart server probing that results in fewer messages. We first define the data structure of an LIT which is essentially packed with a set of surrounding query locations across the terrain and discuss the mobile-side and server-side processes in correspondence to the utilization of LITs. Simulation results confirm that both the ASR and PLU concepts improve scalability and efficiency over existing methods.
文摘In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.
基金supported by National Hi-tech Research and Development Program of China (Grant No. 2006aa042439)
文摘For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.
文摘Hierarchical mobility management is sensitive to the failure of gateway mobility agents and prone to degrade performance on heavy loads. This paper proposes a distributed and adaptive location management scheme based on Hierarchical Mobile IPv6. This scheme can balance the loads of mobility anchor points and increase the robustness of the hierarchical structure to certain extents. In this scheme, the optimized IP paging scheme is adopted to reduce the paging signaling cost and improve the scalability of the hierarchical mobility management. We implement the distributed and adaptive location management scheme in a simulation platform and compare its performance with that of two other location management schemes. Our simulation results show that our scheme is capable of balancing the signaling and traffic loads of mobility ancher points, decreasing the average handover latency, and increasing the throughout of the visited networks.