A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu p...A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.展开更多
Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian st...Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.展开更多
An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loo...An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.展开更多
A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a...A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a kind of zero curvature equation, which permits Lax integrable hierarchies of soliton equations. To aim at generating Hamiltonian structures of such soliton-equation hierarchies, a beautiful Killing-Cartan form, a generalized trace functional of matrices, is given, for which a generalized Tu formula (GTF) is obtained, while the trace identity proposed by Tu Guizhang [J. Math. Phys. 30 (1989) 330] is a special case of the GTF. The computing formula on the constant γ to be determined appearing in the GTF is worked out, which ensures the exact and simple computation on it. Finally, we take two examples to reveal the applications of the theory presented in the article. In details, the first example reveals a new Liouville-integrable hierarchy of soliton equations along with two potential functions and Hamiltonian structure. To obtain the second integrable hierarchy of soliton equations, a higher-dimensional loop algebra is first constructed. Thus, the second example shows another new Liouville integrable hierarchy with 5-potential component functions and bi- Hamiltonian structure. The approach presented in the paper may be extensively used to generate other new integrable soliton-equation hierarchies with multi-Hamiltonian structures.展开更多
A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of t...A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.展开更多
A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constr...A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constructed. Furthermore, we apply the quadratic-form identity to the integrable coupling system of the Tu hierarchy.展开更多
A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential f...A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential functions is worked out, which can be reduced to the famous KN hierarchy.展开更多
A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this p...A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy, which can be reduced to AKNS hierarchy is derived.展开更多
A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the co...A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space ■.By reducing these integrable hierarchies,we obtain the expanded isospectral and nonisospectral derivative nonlinear Schr?dinger equation.By using the trace identity,the biHamiltonian structure of these two hierarchies are also obtained.Moreover,some symmetries and conserved quantities of the resulting hierarchy are discussed.展开更多
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden...A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.展开更多
In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arb...In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arbitrary functions to be certain flmctions and using the trace identity, the generalized Hamiltonian structure of the hierarchy of evolution equations is given, it is shown that this hierarchy of equations is Liouville integrable. Finally some special cases of the isospectral problem are also given.展开更多
We construct a class of modules for the twisted multi-loop algebra of type A1 × A1 by applying Wakimoto free bosonic realization. We also discuss the structures and the irreducibility of the Fock space.
Based on the mathematic representation of loops of kinematic chains, this paper proposes the " ⊕ " operation of loops and its basic laws and establishes the basic theorem system of the loop algebra of kinem...Based on the mathematic representation of loops of kinematic chains, this paper proposes the " ⊕ " operation of loops and its basic laws and establishes the basic theorem system of the loop algebra of kinematic chains. Then the basis loop set and its determination conditions, and the ways to obtain the crucial perimeter topological graph are presented. Furthermore, the characteristic perimeter topo-logical graph and the characteristic adjacency matrix are also developed. The most important characteristic of this theory is that for a topological graph which is drawn or labeled in any way, both the resulting characteristic perimeter topological graph and the characteristic adjacency matrix obtained through this theory are unique, and each has one-to-one correspondence with its kinematic chain. This character-istic dramatically simplifies the isomorphism identification and establishes a theoretical basis for the numeralization of topological graphs, and paves the way for numeralization and computerization of the structural synthesis and mechanism design further. Finally, this paper also proposes a concise isomorphism identifica-tion method of kinematic chains based on the concept of characteristic adjacency matrix.展开更多
In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old...In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.展开更多
文摘A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.
文摘Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx +[U, V] = 0, but in this paper, a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials. Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator ^~J is presented by constructing a subalgebra ^~G of the loop algebra -^~A2. As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers, their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.
文摘An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.
文摘A new Lie algebra, which is far different form the known An-1, is established, for which the corresponding loop algebra is given. From this, two isospectral problems are revealed, whose compatibility condition reads a kind of zero curvature equation, which permits Lax integrable hierarchies of soliton equations. To aim at generating Hamiltonian structures of such soliton-equation hierarchies, a beautiful Killing-Cartan form, a generalized trace functional of matrices, is given, for which a generalized Tu formula (GTF) is obtained, while the trace identity proposed by Tu Guizhang [J. Math. Phys. 30 (1989) 330] is a special case of the GTF. The computing formula on the constant γ to be determined appearing in the GTF is worked out, which ensures the exact and simple computation on it. Finally, we take two examples to reveal the applications of the theory presented in the article. In details, the first example reveals a new Liouville-integrable hierarchy of soliton equations along with two potential functions and Hamiltonian structure. To obtain the second integrable hierarchy of soliton equations, a higher-dimensional loop algebra is first constructed. Thus, the second example shows another new Liouville integrable hierarchy with 5-potential component functions and bi- Hamiltonian structure. The approach presented in the paper may be extensively used to generate other new integrable soliton-equation hierarchies with multi-Hamiltonian structures.
基金supported by Science Foundation of the Educational Department of Shandong Province of China
文摘A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.
文摘A vector loop algebra and its extended loop algebra are proposed, which are devoted to obtaining the Tu hierarchy. By making use of the extended trace identity, the Harniltonian structure of the Tu hierarchy is constructed. Furthermore, we apply the quadratic-form identity to the integrable coupling system of the Tu hierarchy.
基金The project supported by National Natural Science Foundation of China under.Grant No. 10371070
文摘A type of new loop algebra GM is constructed by making use of the concept of cycled numbers. As its application, an isospectral problem is designed and a new multi-component integrable hierarchy with multi-potential functions is worked out, which can be reduced to the famous KN hierarchy.
文摘A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy, which can be reduced to AKNS hierarchy is derived.
基金supported by the National Natural Science Foundation of China (No.12371256)。
文摘A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space ■.By reducing these integrable hierarchies,we obtain the expanded isospectral and nonisospectral derivative nonlinear Schr?dinger equation.By using the trace identity,the biHamiltonian structure of these two hierarchies are also obtained.Moreover,some symmetries and conserved quantities of the resulting hierarchy are discussed.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos.10971136,10831003,61072147,11071159)+3 种基金the Chunhui Plan of the Ministry of Education of Chinathe Innovation Project of Zhejiang Province (No.T200905)the Natural Science Foundation of Shanghai (No.09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
基金Supported by NSF 2009J01011 of Fujian of China,NNSF (10826094)NSF 08KJD110001 of Jiangsu Educational Committee
文摘In this article, some modules over a loop Lie algebra associated to quantum plane are constructed. The isomorphism classes among these modules are also determined.
基金This work was supported by the National Natural Science Foundation of China(No.10401039)the National Key Basic Research Project of China(No. 2004CB318000)
文摘In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arbitrary functions to be certain flmctions and using the trace identity, the generalized Hamiltonian structure of the hierarchy of evolution equations is given, it is shown that this hierarchy of equations is Liouville integrable. Finally some special cases of the isospectral problem are also given.
文摘We construct a class of modules for the twisted multi-loop algebra of type A1 × A1 by applying Wakimoto free bosonic realization. We also discuss the structures and the irreducibility of the Fock space.
基金Supported by the National Natural Science Foundation of China (Grant No. 50575197)
文摘Based on the mathematic representation of loops of kinematic chains, this paper proposes the " ⊕ " operation of loops and its basic laws and establishes the basic theorem system of the loop algebra of kinematic chains. Then the basis loop set and its determination conditions, and the ways to obtain the crucial perimeter topological graph are presented. Furthermore, the characteristic perimeter topo-logical graph and the characteristic adjacency matrix are also developed. The most important characteristic of this theory is that for a topological graph which is drawn or labeled in any way, both the resulting characteristic perimeter topological graph and the characteristic adjacency matrix obtained through this theory are unique, and each has one-to-one correspondence with its kinematic chain. This character-istic dramatically simplifies the isomorphism identification and establishes a theoretical basis for the numeralization of topological graphs, and paves the way for numeralization and computerization of the structural synthesis and mechanism design further. Finally, this paper also proposes a concise isomorphism identifica-tion method of kinematic chains based on the concept of characteristic adjacency matrix.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology (2010-0022035)
文摘In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.