This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. Field experiments were done in Yong'an Town, Huna...This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. Field experiments were done in Yong'an Town, Hunan Province, China in 2015 and 2016. Two hybrid rice cultivars were grown under single seedling machine transplanting (SMT) and conventional machine transplanting (CMT) at a high planting density in each year. Grain yield and yield attributes were compared between SMT and CMT. Averaged across cultivars and years, grain yield was 12% higher under SMT than under CMT. Plant height, basal stem width, and shoot and root dry weights were higher in seedlings for SMT than those for CMT. SMT had less maximum tiller number per m2 and consequently less panicle number per m2 than did CMT. Branch number per panicle, especially the secondary branch number per panicle, and spikelet number per cm of panicle length were more under SMT than under CMT, which resulted in more spikelet number per panicle under SMT than under CMT. SMT had higher or equal spikelet filling percentage than did CMT. The difference in grain weight between SMT and CMT was relatively small and inconsistent cross years. SMT had higher or equal total biomass and harvest index than did CMT. Dry weight per stem under SMT was heavier than that under CMT. Larger leaf area per stem was partly responsible for the heavier dry weight per stem under SMT than under CMT. Our study suggests that improvement in seedling quality, panicle size, and dry weight per stem are critical to the high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions.展开更多
To identify the major factors that contribute to the difference in lodging among different rice varieties under machine transplanting and their responses to nitrogen(N),field experiments were conducted at Danyang Coun...To identify the major factors that contribute to the difference in lodging among different rice varieties under machine transplanting and their responses to nitrogen(N),field experiments were conducted at Danyang County(a representative eco-site of the Lower Yangtze River)in Jiangsu Province,China in 2017 and 2018,22 hybrid indica varieties(HIs),22 inbred japonica varieties(IJs)and two indica japonica hybrid varieties(IJHs)were transplanted by machine with three N rates(N0,N150 and N300,0,150 and 300 kg ha–1,respectively).Lodging-related physical parameters,morphological characteristics and apparent transport rates of dry matter were examined.Significant difference in yield was observed among different types of rice,and followed by IJs<HIs<IJHs.The average lodging index(LI)of hybrid varieties(HIs and IJHs)was higher than that of the inbred varieties(IJs)with higher plant height;moreover,lower apparent export rate of dry matter resulted lower LI in IJHs than in HIs.The HIs had a large difference in the LI,which came from the difference in bending stress(BS)induced by the difference in the apparent export rate of dry matter,varieties with lower leaf angle of upper three leaves possess strong lodging resistance capacity;however,the gap among the IJs was due to the difference in the cross section modulus(Z).The LI in the IJs or IJHs increased slightly with the increased N application,and there was no lodging incidence under the high N level,which was due to the low leaf angle and barely changed under high N;there was a significant interaction between varieties(HIs)and N rates in lodging rate and LI,varieties with lower leaf angle of upper three leaves were resistant to high N.These results suggest that compact plant type rice has higher lodging and N resistance at machine-transplanting method.展开更多
Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplantin...Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.展开更多
[Objective] This paper aimed to clarify the rice planting methods and its supporting technology to be developed in rice producing areas in China. [Method] Evolvement of rice planting methods in rice producing areas in...[Objective] This paper aimed to clarify the rice planting methods and its supporting technology to be developed in rice producing areas in China. [Method] Evolvement of rice planting methods in rice producing areas in China and in representative rice-growth countries abroad, its characteristics, adaptability and key issues were analyzed. [Result] The analysis of development of rice planting method in China and abroad indicated that rice planting method was adapted to rice-based cropping system and ecological environment, and its transition accompanied with social and economic development. With agricultural labor transfer from agriculture to other industries since 1990’s, rice seedling throwing was gradually applied and in recent decades, while direct seeding and machine transplanting were practiced. Now, hand transplanting is still the main rice planting method, adopted in 50% of national rice planting area; seedling throwing, direct seeding and machine transplanting are conducted in 25% , 12% and 13% of the national rice planting area. [Conclusion] Machine transplanting should be a leading rice planting method. Though area covered with machine direct seeding is still small up to now, it can be practiced in some rice growing area due to labor saving and low cost. Leading planting methods and its supporting key technologies are proposed in various rice producing areas in the future.展开更多
[Objective] The aim was to explore effects of tray mat of fiber mulch on quality and yield of early rice-season rice transplanted by machine. [Method] Seedling quality, the rate of leaked rice, density of mechanical t...[Objective] The aim was to explore effects of tray mat of fiber mulch on quality and yield of early rice-season rice transplanted by machine. [Method] Seedling quality, the rate of leaked rice, density of mechanical transplanting rice, mature rate and yield covered with fiber mulch were compared with groups not covered with mulch. Furthermore, different indices of cultivated rice with and without fiber mulch were analyzed and compared. [Result] The rice yield in the group with fiber mulch improved by 11.9% and rice quality enhanced as wel . What's more, rice plants were much easier to be col ected, and the rate of leaked rice lowered by machine. [Conclusion] The research provides theoretical references for seedling transplanting and cultivation of early-season rice by machine with tray mats.展开更多
To address problems caused by rice machine transplanting such as injury to the seedlings and recovery period that extend growth period,this study explored the effects of different machine transplanting methods on the ...To address problems caused by rice machine transplanting such as injury to the seedlings and recovery period that extend growth period,this study explored the effects of different machine transplanting methods on the physiological and yield characteristics of late rice in China,and determine the appropriate machine transplanting method for late rice,which was expected to provide a basis for high-yield and high-efficient cultivation of machine-transplanted late rice.Hybrid indica rice Taiyou 398 and conventional indica rice Jing Gangruanzhan were selected as the research objects,and large-pot carpet seedling machine transplanting(M1),conventional pot carpet seedling machine transplanting(M2)and ordinary carpet seedling machine transplanting(M3)were adopted respectively to analyze their effects on seedling quality,population physiological characteristics,yield and its components and economic benefits of late rice.The results showed that compared with M2 and M3,M1 achieved higher seedling quality,showing significant advantages in the early stage despite average root entwining force that met the requirement of machine transplanting.The seedlings transplanted using M1 had shorter recovery period after mechanical transplanting,with earlier tillering,earlier peak seedling,and slower declining of stems and tillers in the late stage;the peak seedling number was not high,but the effective tiller number and earbearing tiller percentage were significantly higher than those achieved by the other two machine transplanting methods.Also,M1 achieved stronger photosynthetic capacity of flag leaves before HS,with more photosynthetic products in stems and leaves transported to panicles and more efficiently after HS.Compared with seedlings transplanted using M2 and M3,the recovery period of those transplanted using M1 was shortened by 3 and 5 d,the heading stage(HS),and maturity stage(MS)were advanced,which effectively reduced the risk and impact of“cold dew wind”on machine-transplanted late rice.M1 had significant yield increase advantage and economic benefit,with better grain maturity,and“larger panicles,more panicles,more and fuller grains”.M1 achieved an average yield increase of 10.31%-11.10%,20.67%-25.10%in 2 years,and an average income increase of 18.65%-131.06%and 62.85%-323.78%,respectively.Therefore,vigorously developing M1 is the key to the high-yield and high-efficient cultivation of machine-transplanted late rice in China.展开更多
The existing moving box mechanism pot seedling transplanting machine on the market moves too fast when the picked seedling is collected,which negatively impacts the seedling picking performance.In order to improve the...The existing moving box mechanism pot seedling transplanting machine on the market moves too fast when the picked seedling is collected,which negatively impacts the seedling picking performance.In order to improve the performance,two types of variable speed continuous moving box schemes were designed in this study.The first scheme was to apply a spiral-gear moving box spiral shaft with sine curve characteristics in the box moving mechanism,whereas the second one was to change the circular gear in the moving box into an elliptical gear with a speed shifting transmission mechanism.The working mechanism of the mechanical structure was analyzed,and the kinematic model was established.A dynamic analysis of the slider mechanism was performed.A virtual prototype was established according to agronomic parameters,and the virtual prototype experiments were conducted in ADAMS.The physical prototype and the high-speed photography experiment were performed on the test bench of a transplanting machine frame.The theoretical analysis,virtual prototype and physical prototype test results were consistent,which verified the validity of the theoretical model,virtual prototype and physical prototype and ensured the feasibility of the system.展开更多
In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the sam...In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the same time,the parameters of the seedling manipulator were optimized:the mathematical model for the seedling pick-up mechanism was established.According to the predetermined trajectory requirements,the objective function and constraint conditions were proposed,and then the optimal size was obtained by a multi-objective genetic algorithm.At last,Automatic Dynamic Analysis of Mechanical Systems(ADAMS)software was used to simulate and analyze the kinematics and trajectory of the seedling pick-up mechanism,and the mechanism was tested to verify the effectiveness of the mechanism prototype.The experiments showed that the success rate of seedling picking was 94.32%,the rate of acceptably planted seedlings was 96.67%,and the rate of excellently planted seedlings was 63.48%.展开更多
基金supported by the National Key R&D Program of China (2017YFD0301503)the earmarked fund for China Agriculture Research System (CARS-01)
文摘This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. Field experiments were done in Yong'an Town, Hunan Province, China in 2015 and 2016. Two hybrid rice cultivars were grown under single seedling machine transplanting (SMT) and conventional machine transplanting (CMT) at a high planting density in each year. Grain yield and yield attributes were compared between SMT and CMT. Averaged across cultivars and years, grain yield was 12% higher under SMT than under CMT. Plant height, basal stem width, and shoot and root dry weights were higher in seedlings for SMT than those for CMT. SMT had less maximum tiller number per m2 and consequently less panicle number per m2 than did CMT. Branch number per panicle, especially the secondary branch number per panicle, and spikelet number per cm of panicle length were more under SMT than under CMT, which resulted in more spikelet number per panicle under SMT than under CMT. SMT had higher or equal spikelet filling percentage than did CMT. The difference in grain weight between SMT and CMT was relatively small and inconsistent cross years. SMT had higher or equal total biomass and harvest index than did CMT. Dry weight per stem under SMT was heavier than that under CMT. Larger leaf area per stem was partly responsible for the heavier dry weight per stem under SMT than under CMT. Our study suggests that improvement in seedling quality, panicle size, and dry weight per stem are critical to the high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions.
基金the National Natural Science Foundation of China (31871573)the National Key Research and Development Program of China (2016YFD0300505,2017YFD0301200 and 2018YFD0300803)the Jiangsu Key Research and Development Program,China (BE2017369)。
文摘To identify the major factors that contribute to the difference in lodging among different rice varieties under machine transplanting and their responses to nitrogen(N),field experiments were conducted at Danyang County(a representative eco-site of the Lower Yangtze River)in Jiangsu Province,China in 2017 and 2018,22 hybrid indica varieties(HIs),22 inbred japonica varieties(IJs)and two indica japonica hybrid varieties(IJHs)were transplanted by machine with three N rates(N0,N150 and N300,0,150 and 300 kg ha–1,respectively).Lodging-related physical parameters,morphological characteristics and apparent transport rates of dry matter were examined.Significant difference in yield was observed among different types of rice,and followed by IJs<HIs<IJHs.The average lodging index(LI)of hybrid varieties(HIs and IJHs)was higher than that of the inbred varieties(IJs)with higher plant height;moreover,lower apparent export rate of dry matter resulted lower LI in IJHs than in HIs.The HIs had a large difference in the LI,which came from the difference in bending stress(BS)induced by the difference in the apparent export rate of dry matter,varieties with lower leaf angle of upper three leaves possess strong lodging resistance capacity;however,the gap among the IJs was due to the difference in the cross section modulus(Z).The LI in the IJs or IJHs increased slightly with the increased N application,and there was no lodging incidence under the high N level,which was due to the low leaf angle and barely changed under high N;there was a significant interaction between varieties(HIs)and N rates in lodging rate and LI,varieties with lower leaf angle of upper three leaves were resistant to high N.These results suggest that compact plant type rice has higher lodging and N resistance at machine-transplanting method.
基金supported by the National Key Research and Development Program of China(2017YFD0301701 and 2017YFD0301706)National Natural Science Foundation of China(31660369)。
文摘Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.
基金Supported by the Special Funds for Agro-scientific Research in the Public Interest (201003016 201203029)Special Fund for the Industrial Technology System Construction of Modern Agriculture (CARS-01-04A)~~
文摘[Objective] This paper aimed to clarify the rice planting methods and its supporting technology to be developed in rice producing areas in China. [Method] Evolvement of rice planting methods in rice producing areas in China and in representative rice-growth countries abroad, its characteristics, adaptability and key issues were analyzed. [Result] The analysis of development of rice planting method in China and abroad indicated that rice planting method was adapted to rice-based cropping system and ecological environment, and its transition accompanied with social and economic development. With agricultural labor transfer from agriculture to other industries since 1990’s, rice seedling throwing was gradually applied and in recent decades, while direct seeding and machine transplanting were practiced. Now, hand transplanting is still the main rice planting method, adopted in 50% of national rice planting area; seedling throwing, direct seeding and machine transplanting are conducted in 25% , 12% and 13% of the national rice planting area. [Conclusion] Machine transplanting should be a leading rice planting method. Though area covered with machine direct seeding is still small up to now, it can be practiced in some rice growing area due to labor saving and low cost. Leading planting methods and its supporting key technologies are proposed in various rice producing areas in the future.
基金Supported by National Fiber Industyr Technology System(CARS-19)~~
文摘[Objective] The aim was to explore effects of tray mat of fiber mulch on quality and yield of early rice-season rice transplanted by machine. [Method] Seedling quality, the rate of leaked rice, density of mechanical transplanting rice, mature rate and yield covered with fiber mulch were compared with groups not covered with mulch. Furthermore, different indices of cultivated rice with and without fiber mulch were analyzed and compared. [Result] The rice yield in the group with fiber mulch improved by 11.9% and rice quality enhanced as wel . What's more, rice plants were much easier to be col ected, and the rate of leaked rice lowered by machine. [Conclusion] The research provides theoretical references for seedling transplanting and cultivation of early-season rice by machine with tray mats.
基金sponsored by Science and Technology Power Economy 2020 (2020YFF0426562-2).
文摘To address problems caused by rice machine transplanting such as injury to the seedlings and recovery period that extend growth period,this study explored the effects of different machine transplanting methods on the physiological and yield characteristics of late rice in China,and determine the appropriate machine transplanting method for late rice,which was expected to provide a basis for high-yield and high-efficient cultivation of machine-transplanted late rice.Hybrid indica rice Taiyou 398 and conventional indica rice Jing Gangruanzhan were selected as the research objects,and large-pot carpet seedling machine transplanting(M1),conventional pot carpet seedling machine transplanting(M2)and ordinary carpet seedling machine transplanting(M3)were adopted respectively to analyze their effects on seedling quality,population physiological characteristics,yield and its components and economic benefits of late rice.The results showed that compared with M2 and M3,M1 achieved higher seedling quality,showing significant advantages in the early stage despite average root entwining force that met the requirement of machine transplanting.The seedlings transplanted using M1 had shorter recovery period after mechanical transplanting,with earlier tillering,earlier peak seedling,and slower declining of stems and tillers in the late stage;the peak seedling number was not high,but the effective tiller number and earbearing tiller percentage were significantly higher than those achieved by the other two machine transplanting methods.Also,M1 achieved stronger photosynthetic capacity of flag leaves before HS,with more photosynthetic products in stems and leaves transported to panicles and more efficiently after HS.Compared with seedlings transplanted using M2 and M3,the recovery period of those transplanted using M1 was shortened by 3 and 5 d,the heading stage(HS),and maturity stage(MS)were advanced,which effectively reduced the risk and impact of“cold dew wind”on machine-transplanted late rice.M1 had significant yield increase advantage and economic benefit,with better grain maturity,and“larger panicles,more panicles,more and fuller grains”.M1 achieved an average yield increase of 10.31%-11.10%,20.67%-25.10%in 2 years,and an average income increase of 18.65%-131.06%and 62.85%-323.78%,respectively.Therefore,vigorously developing M1 is the key to the high-yield and high-efficient cultivation of machine-transplanted late rice in China.
基金supported by the National Key Research and Development Program of the 13th Five-year Plan(Grant No.2017YFD070802-2)the China Special Fund for Agro-Scientific Research in the Public Interest(Grant No.201203059-01)+3 种基金the National Key Technology R&D Program(Grant No.2014BAD06B-1-05)the Open Fund Projects of Zhejiang Province Planting Equipment Technology Key Laboratory(Grant No.2013E10013-06)the National Natural Science Foundation of China(Grant No.51775104)by the National Key Technology R&D Program(Grant No.2014BAD06B01-13).
文摘The existing moving box mechanism pot seedling transplanting machine on the market moves too fast when the picked seedling is collected,which negatively impacts the seedling picking performance.In order to improve the performance,two types of variable speed continuous moving box schemes were designed in this study.The first scheme was to apply a spiral-gear moving box spiral shaft with sine curve characteristics in the box moving mechanism,whereas the second one was to change the circular gear in the moving box into an elliptical gear with a speed shifting transmission mechanism.The working mechanism of the mechanical structure was analyzed,and the kinematic model was established.A dynamic analysis of the slider mechanism was performed.A virtual prototype was established according to agronomic parameters,and the virtual prototype experiments were conducted in ADAMS.The physical prototype and the high-speed photography experiment were performed on the test bench of a transplanting machine frame.The theoretical analysis,virtual prototype and physical prototype test results were consistent,which verified the validity of the theoretical model,virtual prototype and physical prototype and ensured the feasibility of the system.
基金This research was supported by the National Natural Science Foundation of China(Grant No.51775104).
文摘In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the same time,the parameters of the seedling manipulator were optimized:the mathematical model for the seedling pick-up mechanism was established.According to the predetermined trajectory requirements,the objective function and constraint conditions were proposed,and then the optimal size was obtained by a multi-objective genetic algorithm.At last,Automatic Dynamic Analysis of Mechanical Systems(ADAMS)software was used to simulate and analyze the kinematics and trajectory of the seedling pick-up mechanism,and the mechanism was tested to verify the effectiveness of the mechanism prototype.The experiments showed that the success rate of seedling picking was 94.32%,the rate of acceptably planted seedlings was 96.67%,and the rate of excellently planted seedlings was 63.48%.