期刊文献+
共找到856篇文章
< 1 2 43 >
每页显示 20 50 100
Combining field data and modeling to better understand maize growth response to phosphorus(P) fertilizer application and soil P dynamics in calcareous soils
1
作者 Weina Zhang Zhigan Zhao +3 位作者 Di He Junhe Liu Haigang Li Enli Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1006-1021,共16页
We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a f... We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics. 展开更多
关键词 maize phosphorus availability modeling APSIM maize APSIM SoilP
下载PDF
Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize
2
作者 Binbin Li Xianmin Chen +6 位作者 Tao Deng Xue Zhao Fang Li Bingchao Zhang Xin Wang Si Shen Shunli Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期551-565,共15页
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de... The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure. 展开更多
关键词 maize high temperature internode growth PLASTICITY plant architecture
下载PDF
The cytosolic isoform of triosephosphate isomerase,ZmTPI4,is required for kernel development and starch synthesis in maize(Zea mays L.)
3
作者 Wenyu Li Han Wang +7 位作者 Qiuyue Xu Long Zhang Yan Wang Yongbiao Yu Xiangkun Guo Zhiwei Zhang Yongbin Dong Yuling Li 《The Crop Journal》 SCIE CSCD 2024年第2期401-410,共10页
Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild... Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild type,zmtpi4 mutants showed altered ear development,reduced kernel weight and starch content,modified starch granule morphology,and altered amylose and amylopectin content.Protein,ATP,and pyruvate contents were reduced,indicating ZmTPI4 was involved in glycolysis.Although subcellular localization confirmed ZmTPI4 as a cytosolic rather than a plastid isoform of TPI,the zmtpi4 mutant showed reduced leaf size and chlorophyll content.Overexpression of ZmTPI4 in Arabidopsis led to enlarged leaves and increased seed weight,suggesting a positive regulatory role of ZmTPI4 in kernel weight and starch content.We conclude that ZmTPI4 functions in maize kernel development,starch synthesis,glycolysis,and photosynthesis. 展开更多
关键词 maize Kernel STARCH Weight PHOTOSYNTHESIS
下载PDF
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil
4
作者 Minghui Cao Yan Duan +6 位作者 Minghao Li Caiguo Tang Wenjie Kan Jiangye Li Huilan Zhang Wenling Zhong Lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Integrating phosphorus management and cropping technology for sustainable maize production
5
作者 Haiqing Gong Yue Xiang +4 位作者 Jiechen Wu Laichao Luo Xiaohui Chen Xiaoqiang Jiao Chen Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1369-1380,共12页
Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective appro... Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development. 展开更多
关键词 maize plant density mineral phosphorus fertilizer META-ANALYSIS substance flow analysis
下载PDF
Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China
6
作者 Cheng Guo Xiaojie Zhang +9 位作者 Baobao Wang Zhihuan Yang Jiping Li Shengjun Xu Chunming Wang Zhijie Guo Tianwang Zhou Liu Hong Xiaoming Wang Canxing Duan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期888-900,共13页
Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and s... Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight. 展开更多
关键词 maize leaf blight MORPHOLOGY molecular phylogeny Eutiarosporella dactylidis fungicide sensitivity
下载PDF
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China
7
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao Irrigation District
下载PDF
Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts
8
作者 Jiangkuan Cui Haohao Ren +5 位作者 BoWang Fujie Chang Xuehai Zhang Haoguang Meng Shijun Jiang Jihua Tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1593-1603,共11页
The occurrence, distribution, and rapid molecular detection technology of Heterodera zeae Koshy et al. 1971, have been reported in China. We explored the biological characteristics of H. zeae sampled in Henan Province... The occurrence, distribution, and rapid molecular detection technology of Heterodera zeae Koshy et al. 1971, have been reported in China. We explored the biological characteristics of H. zeae sampled in Henan Province, China to understand its interaction with plants. Cysts and second-stage juveniles(J2s) were identified under an optical and scanning electron microscope, internal transcribed spacer(ITS) phylogenetic tree, and sequence characterized amplified region(SCAR)-PCR analyses. The optimum hatching temperatures of H. zeae were 30°C and 28°C, with cumulative hatching rates of 16.5 and 16.1%, respectively, at 30 days post-hatching(dph). The hatching rate of H. zeae eggs was improved by 20-and 50-time maize soil leachate and root juice, and 10-time root exudates. The hatching rate in 10-time root exudates was the highest(25.9%). The 10-time root exudates of maize and millet produced the highest hatching rate at 30 dph(25.9 and 22.9%, respectively), followed by wheat(19.9%), barley(18.3%), and rice(17.6%). Heterodera zeae developed faster in maize than in other crops. Fourth-stage juveniles(J4s) were detected in maize roots 8 days post-inoculation(dpi) at 28°C but not in other crops. Combined with hatching tests, the Huang–Huai–Hai summer maize region and the south and central-southwest mountainous maize areas are highly suitable for H. zeae in China. This is the first systematically study of the hatching and infection characteristics on different plant hosts of corn cyst nematode H. zeae in temperate regions. This study laid a theoretical foundation for the rapid spread and high environmental adaptability of corn cyst nematode. 展开更多
关键词 crop host resistance Heterodera zeae incubation fluid maize cyst nematode nematode development nematodehatching
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions
9
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density maize grain yield N uptake compensation effect
下载PDF
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize
10
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 maize nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau,China
11
作者 Qilong Song Jie Zhang +3 位作者 Fangfang Zhang Yufang Shen Shanchao Yue Shiqing Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1671-1684,共14页
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef... Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau. 展开更多
关键词 maize yield N management economic optimal N rate Loess Plateau
下载PDF
Genome-wide association mapping and genomic prediction of stalk rot in two mid-altitude tropical maize populations
12
作者 Junqiao Song Angela Pacheco +7 位作者 Amos Alakonya Andrea S.Cruz-Morales Carlos Muoz-Zavala Jingtao Qu Chunping Wang Xuecai Zhang Felix San Vicente Thanda Dhliwayo 《The Crop Journal》 SCIE CSCD 2024年第2期558-568,共11页
Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more e... Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more effective breeding strategy for stalk-rot resistance than marker-assisted selection.We performed a genome-wide association study(GWAS)and genomic prediction of resistance in testcross hybrids of 677 inbred lines from the Tuxpe?o and non-Tuxpe?o heterotic pools grown in three environments and genotyped with 200,681 single-nucleotide polymorphisms(SNPs).Eighteen SNPs associated with stalk rot shared genomic regions with gene families previously associated with plant biotic and abiotic responses.More favorable SNP haplotypes traced to tropical than to temperate progenitors of the inbred lines.Incorporating genotype-by-environment(G×E)interaction increased genomic prediction accuracy. 展开更多
关键词 maize stalk rot Genome-wide association mapping Haplotype analysis Genomic prediction G×E interaction
下载PDF
ZmCYP90D1 regulates maize internode development by modulating brassinosteroid-mediated cell division and growth
13
作者 Canran Sun Yang Liu +8 位作者 Guofang Li Yanle Chen Mengyuan Li Ruihua Yang Yongtian Qin Yongqiang Chen Jinpeng Cheng Jihua Tang Zhiyuan Fu 《The Crop Journal》 SCIE CSCD 2024年第1期58-67,共10页
Plant height(PH)is associated with lodging resistance and planting density,which is regulated by a complicated gene network.In this study,we identified a spontaneous dwarfing mutation in maize,m30,with decreased inter... Plant height(PH)is associated with lodging resistance and planting density,which is regulated by a complicated gene network.In this study,we identified a spontaneous dwarfing mutation in maize,m30,with decreased internode number and length but increased internode diameter.A candidate gene,ZmCYP90D1,which encodes a member of the cytochrome P450 family,was isolated by map-based cloning.ZmCYP90D1 was constitutively expressed and showed highest expression in basal internodes,and its protein was targeted to the nucleus.A G-to-A substitution was identified to be the causal mutation,which resulted in a truncated protein in m30.Loss of function of ZmCYP90D1 changed expression of hormoneresponsive genes,in particular brassinosteroid(BR)-responsive genes which is mainly involved in cell cycle regulation and cell wall extension and modification in plants.The concentration of typhasterol(TY),a downstream intermediate of ZmCYP90D1 in the BR pathway,was reduced.A haplotype conferring dwarfing without reducing yield was identified.ZmCYP90D1 was inferred to influence plant height and stalk diameter via hormone-mediated cell division and cell growth via the BR pathway. 展开更多
关键词 maize ZmCYP90D1 BR biosynthesis Dwarf plant
下载PDF
Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System
14
作者 Mingzhao Han Susilawati Kasim +4 位作者 Zhongming Yang Xi Deng Md Kamal Uddin Noor Baity Saidi Effyanti Mohd Shuib 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期213-226,共14页
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ... Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress. 展开更多
关键词 Drought biostimulants photosynthesis OSMOPROTECTANTS ANTIOXIDANTS maize
下载PDF
Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO_(3)^(–) and NH_(4)^(+) supply
15
作者 Peng Wang Lan Yang +4 位作者 Xichao Sun Wenjun Shi Rui Dong Yuanhua Wu Guohua Mi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1048-1060,共13页
A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti... A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency. 展开更多
关键词 maize NO_(3)^(–)/NH_(4)^(+)ratio lateral root elongation N assimilation indole-3-acetic acid
下载PDF
Effects of Low Temperature Stress on Germination and Physiological Characteristics of Different Sweet Maize Varieties
16
作者 Zhenxing WU Jianjian CHEN +1 位作者 Tingzhen WANG Guihua LU 《Plant Diseases and Pests》 2024年第1期1-3,6,共4页
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as... [Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production. 展开更多
关键词 Sweet maize Low temperature stress GERMINATION Antioxidant enzyme
下载PDF
Response of the Maize Variety EV87-28 to a Fertilization Strategy Involving Indorama Granular Urea on Ferralsol in the Central Ivory Coast
17
作者 Fernand Guy Yao Kouadio Amani +6 位作者 Brou Kouame Jean Lopez Essehi Brahima Kone Kouadio Houphouet Cheikh Ahmed Diawara Bala Mamadou Ouattara Albert Yao-Kouame 《Agricultural Sciences》 2024年第1期187-208,共22页
In Côte d’Ivoire, the decline in soil fertility strongly impacts the productivity of maize (Zea mays L.) on heavily leached ferralitic soil. In this study, the general objective was therefore to improve the prod... In Côte d’Ivoire, the decline in soil fertility strongly impacts the productivity of maize (Zea mays L.) on heavily leached ferralitic soil. In this study, the general objective was therefore to improve the productivity of maize EV87-28 on the Ferralsols in pre-forested areas during different cropping seasons. Eight (8) micro-plots were set up according to a total randomization device with three repetitions. Two factors were studied: nitrogen fertilizer modalities (main factor) and crop season (secondary factor). Growth, flowering and yield parameters were measured and analyzed. The results showed that there was no interaction between the nitrogen fertilizer factor and the cropping season factor. In addition, this study showed the short rainy season had the most positive impact on growth, flowering and yield parameters than the long rainy season. The results also showed that the different nitrogen fertilizer modalities had no statistically different effects on growth, flowering and yield parameters. However, quantitative differences were reported, highlighting one nitrogen fertilizer modality, which is the combination of urea granule + farm manure (75% urea indorama granules and 25% farm manure). The combination of urea granule + farm manure (75% urea indorama granules and 25% farm manure) had the best effect on corn grain yield. So, the combination of urea (75%) and manure (25%), that resulted in yield gain, could be recommended for corn fertilization during the small rainy season. 展开更多
关键词 Indorama Granular Urea FERRALSOL Cultural Seasons maize Ivory Coast
下载PDF
Extreme Climatic Characteristics and Their Effects on Maize Yield in Hei-longjiang Province from 1961 to 2020
18
作者 Zhao Chang-shuai Fu Hong-tai +2 位作者 Yuan Ying-ying Li Xin-li Sun Yan-kun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第3期44-59,共16页
This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal compon... This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal component analysis to analyze the extent of different extreme climatic events affecting maize yield.The results showed that the extreme cold events showed a decreasing trend,and the extreme warm events showed an increasing trend,and the trend of extreme precipitation change was not obvious.Maize yield was negatively correlated with TN10p(cold nights),TX10p(warm days)and T8(days below the lower temperature limit),and positively correlated with TN90p(warm nights).T34(days above the upper temperature limit)and TX90p(warm days)during the tasseling-milking period were negatively correlated with the maize yield,and this part was concentrated in the southern part of Heilongjiang Province.The maize yield was positively correlated with the extreme precipitation during the seedling period and negatively correlated with the extreme precipitation during the filling-maturity period of maize,but the correlations were not significant.The effects of extreme weather events on maize yield were higher during the seedling and the filling-maturity periods than those during the jointing-tasseling and the tasseling-milking periods.The effects of extreme precipitation on the maize yield were less than those of the extreme temperature during different growth periods in all regions,but the effects of the extreme precipitation on maize yield were significantly higher in the Songnen Plain than those in other regions.There were regional differences in the impact of climate extremes on maize during different growth periods.The area with the greater impact of climate extremes during the seedling period was the Songnen Plain,the areas with the greater impact of climate extremes during the jointing-tasseling period were the northern part of the Sanjiang Plain,and the areas with the greater impact of climate extremes during the filling-maturity period were the Lesser Khingan Mountains and the semi-mountainous areas of Mudanjiang. 展开更多
关键词 extreme temperature extreme precipitation maize yield maize growth period
下载PDF
Maize 6H-60K芯片在玉米实质性派生品种鉴定中的应用分析 被引量:1
19
作者 田红丽 张如养 +6 位作者 范亚明 杨扬 张云龙 易红梅 邢锦丰 王凤格 赵久然 《作物学报》 CAS CSCD 北大核心 2023年第11期2876-2885,共10页
玉米实质性派生品种鉴定已成为当前种业知识产权保护的热点之一。为加快其精准高效分子鉴定技术的建立,本文利用多种类型派生品种为研究材料:京2416与京2416C(两者为遗传背景高度相近的两个自交系),京724与京72464(两者为遗传背景相近... 玉米实质性派生品种鉴定已成为当前种业知识产权保护的热点之一。为加快其精准高效分子鉴定技术的建立,本文利用多种类型派生品种为研究材料:京2416与京2416C(两者为遗传背景高度相近的两个自交系),京724与京72464(两者为遗传背景相近的两个自交系),以及由京724与京72464两者构建的893个DH系遗传群体等。研究分析了Maize 6H-60K芯片(包含61,214个SNP位点集合)应用于玉米派生品种鉴定的潜力。结果显示:(1)京2416与京2416C间存在829个SNP位点差异,GS值(遗传相似度)为98.7%,56.7%的差异位点集中分布在5号染色体长度约39 Mb区域内。(2)京724与京72464之间差异位点数目为4912个,GS值为90.1%,44.8%的差异位点集中分布在3号染色体上。(3)893个DH系与2个亲本京724及京72464之间的GS值分布均呈现连续性,其中与京724之间的GS值范围88.0%-97.0%,平均值为92.6%;与京72464之间的GS值范围88.3%-98.6%,平均值为94.5%。(4)893个DH系进行两两成对比较,共比较398,278‬对,所有DH系之间均有明确的SNP位点差异;GS值最小为87.5%,最大为99.9%,平均值为94.3%。结果表明Maize 6H-60K包含的SNP位点集能够精准评估派生、近似或极近似自交系及DH系的遗传背景,将所有材料一一鉴别明确区分开来,并具有进一步锁定与派生性状连锁标记的潜力。建议亟需基于Maize 6H-60K SNP位点集合,利用高效芯片、靶向测序等平台建立玉米实质性派生品种分子鉴定技术规程,为玉米品种知识产权保护、品种创新等提供技术支撑。 展开更多
关键词 玉米 实质性派生品种 分子鉴定 maize 6H-60K芯片 高密度SNP位点集合
下载PDF
Nitrogen management improves lodging resistance and production in maize(Zea mays L.)at a high plant density 被引量:3
20
作者 Irshad AHMAD Maksat BATYRBEK +6 位作者 Khushnuma IKRAM Shakeel AHMAD Muhammad KAMRAN Misbah Raham Sher KHAN HOU Fu-jiang HAN Qing-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期417-433,共17页
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni... Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density. 展开更多
关键词 high plant density lodging resistance maize nitrogen rates nitrogen application modes
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部