In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for reco...In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.展开更多
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor...In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.展开更多
Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.A...Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.展开更多
基金supported by the National Defense Pre-research Project in 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘In order to optimize the spares configuration project at different stages during the life cycle, the factor of time is considered to relax the assumption of the spares steady demand in multi-echelon technique for recoverable item control (METRIC) theory. According to the method of systems analysis, the dynamic palm theorem is introduced to establish the prediction model of the spares demand rate, and its main influence factors are analyzed, based on which, the spares support effectiveness evaluation index system is studied, and the system optimization-oriented spares dynamic configuration method for multi-echelon multi-indenture system is proposed. Through the analysis of the optimization algorithm, the layered marginal algorithm is designed to improve the model calculation efficiency. In a given example, the multi-stage spares configuration project during its life cycle is gotten, the research result conforms to the actual status, and it can provide a new way for the spares dynamic optimization.
基金supported by the National Natural Science Foundation of China (6087309960775013)
文摘In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.
文摘Spares inventory configuration optimization is an effective way to improve readiness and reduce life cycle cost of equipment.Through analyzing two-echelon spares support system,the METRIC model basic theory was used.An inventory configuration optimization model of two-echelon spares support system was proposed which took the spares expected shortfall as the object and made the minimum repairable parts expected shortfall instead of the maximum spares supportability as the objective function.Marginal efficiency analysis algorithm was applied to optimizing the spares configuration and generating a rational spares inventory configuration.Finally,several examples are given to verify the model.