The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction...The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.展开更多
Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction am...Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction among different areas of a sea bay, and to predict the water quality of those areas. The relation matrix is calculated based on the numerical results from a water quality model. This method is applied to the study of water exchange and the prediction of water quality of the Bohai Sea. The Bohai Sea is divided into five areas, and the effect of seasonal wind is taken into consideration. The results show a) the relation matrix can be used to study the water exchange among different areas and predict water quality of different areas at the respective characteristic time, b) the reduction of pollutant is dependent on both water exchange and initial distribution of the pollutant, and c) the half-life time of the pollutant is longer than the half-exchange time of the sea water.展开更多
With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that d...With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that during two formation processes, the matrix potential changes of the loess all presented a good linear relationship with water conversion ratios. In addition, although it was well known that the secondary gas hydrate formation was easier than the initial, our experimental results showed that the initial hydrate formation efficiency in non-saturated loess was higher than that of the secondary.展开更多
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation...In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.展开更多
This study employed the Rapid Impact Assessment Matrix (RIAM) to prioritize the water resources management problems in the North Central Nigeria. This was done through the assessment of the status of water resources m...This study employed the Rapid Impact Assessment Matrix (RIAM) to prioritize the water resources management problems in the North Central Nigeria. This was done through the assessment of the status of water resources management in the region, evaluation of existing policy and strategy of water management, identification of the management problems and the prioritization with RIAM. The stakeholders identified water resources management problems, ranked them in other of severity in different categories and also evaluated them using the RIAM techniques in the administered questionnaire. Eleven problems were analyzed based on the physical/chemical, biological/ecological, social/cultural and economic/operational factors using several impact indicators. Scores were assigned, the RIAM models applied and the averages taken to arrive at the final assessment scores. The two major water resources management problems identified are: 1) inadequate funds for further agricultural, hydroelectric, navigation and industrial development;2) poor data collection and banking. These problems were prioritized by RIAM in order of severity for urgent intervention. The RIAM technique has made a key contribution to the prioritization of water resources management by providing insights into urgent problems according to stakeholders and thus guides the policy maker in appropriate decision making.展开更多
基金supported by the National Natural Science Foundation of China(52222002)Bureau of International Cooperation of Chinese Academy of Sciences(032GJHZ2022035MI)State Key Laboratory of Environmental Aquatic Chemistry(23Z01ESPCR).
文摘The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.
基金This workis financially supported bythe National Natural Science Foundation of China (Grant No.50479049) theNatural Science Foundation of Tianjin (Grant No.033804011)the Hi-tech Development Program(Grant No.2002AA64801006)
文摘Water exchange is an important hydrodynamic character of sea bays, and it is the basis for the study of the environmental capacity of sea bays. In this paper, a relation matrix is set up to describe the interaction among different areas of a sea bay, and to predict the water quality of those areas. The relation matrix is calculated based on the numerical results from a water quality model. This method is applied to the study of water exchange and the prediction of water quality of the Bohai Sea. The Bohai Sea is divided into five areas, and the effect of seasonal wind is taken into consideration. The results show a) the relation matrix can be used to study the water exchange among different areas and predict water quality of different areas at the respective characteristic time, b) the reduction of pollutant is dependent on both water exchange and initial distribution of the pollutant, and c) the half-life time of the pollutant is longer than the half-exchange time of the sea water.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)the Training Fund of State Key Laboratory of Frozen Soil Engineering of Chinese Academy of Sciences (Grant No. 52YOSF102)
文摘With a new apparatus designed and assembled by ourselves, the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes. The experimental results showed that during two formation processes, the matrix potential changes of the loess all presented a good linear relationship with water conversion ratios. In addition, although it was well known that the secondary gas hydrate formation was easier than the initial, our experimental results showed that the initial hydrate formation efficiency in non-saturated loess was higher than that of the secondary.
文摘In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.
文摘This study employed the Rapid Impact Assessment Matrix (RIAM) to prioritize the water resources management problems in the North Central Nigeria. This was done through the assessment of the status of water resources management in the region, evaluation of existing policy and strategy of water management, identification of the management problems and the prioritization with RIAM. The stakeholders identified water resources management problems, ranked them in other of severity in different categories and also evaluated them using the RIAM techniques in the administered questionnaire. Eleven problems were analyzed based on the physical/chemical, biological/ecological, social/cultural and economic/operational factors using several impact indicators. Scores were assigned, the RIAM models applied and the averages taken to arrive at the final assessment scores. The two major water resources management problems identified are: 1) inadequate funds for further agricultural, hydroelectric, navigation and industrial development;2) poor data collection and banking. These problems were prioritized by RIAM in order of severity for urgent intervention. The RIAM technique has made a key contribution to the prioritization of water resources management by providing insights into urgent problems according to stakeholders and thus guides the policy maker in appropriate decision making.