Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and...Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and efficient PLF method is required to take this chage into account.This paper studies the maximum entropy probabilistic density function reconstruction method based on cumulant arithmetic of linearized load flow formulation,and then develops a maximum entropy based PLF(MEPLF) calculation algorithm for power system integrated with wind power generation(WPG). Compared with traditional Gram–Charlier expansion based PLF(GC-PLF)calculation method, the proposed ME-PLF calculation algorithm can obtain more reliable and accurate probabilistic density functions(PDFs) of bus voltages and branch flows in various WT parameter scenarios. It can solve thelimitation of GC-PLF calculation method that mistakenly gains negative values in tail regions of PDFs. Linear dependence between active and reactive power injections of WPG can also be effectively considered by the modified cumulant calculation framework. Accuracy and efficiency of the proposed approach are validated with some test systems. Uncertainties yielded by the wind speed variations, WT locations, power factor fluctuations are considered.展开更多
In order to restrain the mid-spatial frequency error in magnetorheological finishing (MRF) process, a novel part-random path is designed based on the theory of maximum entropy method (MEM). Using KDMRF-1000F polishing...In order to restrain the mid-spatial frequency error in magnetorheological finishing (MRF) process, a novel part-random path is designed based on the theory of maximum entropy method (MEM). Using KDMRF-1000F polishing machine, one flat work piece (98 mm in diameter) is polished. The mid-spatial frequency error in the region using part-random path is much lower than that by using common raster path. After one MRF iteration (7.46 min), peak-to-valley (PV) is 0.062 wave (1 wave =632.8 nm), root-mean-square (RMS) is 0.010 wave and no obvious mid-spatial frequency error is found. The result shows that the part-random path is a novel path, which results in a high form accuracy and low mid-spatial frequency error in MRF process.展开更多
基金supported by National Natural Science Foundation of China(No.51625702,No.51377117,No.51677124)National High-tech R&D Program of China(863Program)(No.2015AA050403)
文摘Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and efficient PLF method is required to take this chage into account.This paper studies the maximum entropy probabilistic density function reconstruction method based on cumulant arithmetic of linearized load flow formulation,and then develops a maximum entropy based PLF(MEPLF) calculation algorithm for power system integrated with wind power generation(WPG). Compared with traditional Gram–Charlier expansion based PLF(GC-PLF)calculation method, the proposed ME-PLF calculation algorithm can obtain more reliable and accurate probabilistic density functions(PDFs) of bus voltages and branch flows in various WT parameter scenarios. It can solve thelimitation of GC-PLF calculation method that mistakenly gains negative values in tail regions of PDFs. Linear dependence between active and reactive power injections of WPG can also be effectively considered by the modified cumulant calculation framework. Accuracy and efficiency of the proposed approach are validated with some test systems. Uncertainties yielded by the wind speed variations, WT locations, power factor fluctuations are considered.
基金Supported by the National Basic Research Program of Chinathe National Natural Science Foundation of China (Grant Nos. 61332, 50775215, 50875256)
文摘In order to restrain the mid-spatial frequency error in magnetorheological finishing (MRF) process, a novel part-random path is designed based on the theory of maximum entropy method (MEM). Using KDMRF-1000F polishing machine, one flat work piece (98 mm in diameter) is polished. The mid-spatial frequency error in the region using part-random path is much lower than that by using common raster path. After one MRF iteration (7.46 min), peak-to-valley (PV) is 0.062 wave (1 wave =632.8 nm), root-mean-square (RMS) is 0.010 wave and no obvious mid-spatial frequency error is found. The result shows that the part-random path is a novel path, which results in a high form accuracy and low mid-spatial frequency error in MRF process.