In the situation where the sampling units in a study can be easily ranked than quantified, the ranked set sampling methods are found to be more efficient and cost effective as compared to SRS. In this paper we propose...In the situation where the sampling units in a study can be easily ranked than quantified, the ranked set sampling methods are found to be more efficient and cost effective as compared to SRS. In this paper we propose an estimator of the population mean using paired ranked set sampling (RSS) method. The proposed estimator is an unbiased estimator of the population mean when the set size is even. In case of odd set size the estimator is unbiased when the underlying distribution is symmetric. It is shown that the proposed estimator is more efficient than its counterpart SRS method for all distributions considered in this study.展开更多
In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mea...In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mean Squared Error (MSE) of the proposed class of estimators are obtained to first degree of approximation. It is identified that the proposed class of estimators is more efficient as compared to [1] estimator and several other estimators. A simulation study is carried out to judge the performances of the estimators.展开更多
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
文摘In the situation where the sampling units in a study can be easily ranked than quantified, the ranked set sampling methods are found to be more efficient and cost effective as compared to SRS. In this paper we propose an estimator of the population mean using paired ranked set sampling (RSS) method. The proposed estimator is an unbiased estimator of the population mean when the set size is even. In case of odd set size the estimator is unbiased when the underlying distribution is symmetric. It is shown that the proposed estimator is more efficient than its counterpart SRS method for all distributions considered in this study.
文摘In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mean Squared Error (MSE) of the proposed class of estimators are obtained to first degree of approximation. It is identified that the proposed class of estimators is more efficient as compared to [1] estimator and several other estimators. A simulation study is carried out to judge the performances of the estimators.
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.