This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinea...This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.展开更多
We investigate the sensitivity of the angular rotation measurement with the method of homodyne detection in SU(2) and SU(1,1) interferometers by employing orbital angular momentum(OAM). By combining a coherent beam wi...We investigate the sensitivity of the angular rotation measurement with the method of homodyne detection in SU(2) and SU(1,1) interferometers by employing orbital angular momentum(OAM). By combining a coherent beam with a vacuum beam in an SU(2) interferometer, we get the sensitivity of the angular rotation measurement as 1/(2N^(1/2)l). We can surpass the limit of the angular rotation measurement in an SU(1,1) interferometer by combining a coherent beam with a vacuum beam or a squeezed vacuum beam when the probe beam has OAM. Without injection, the sensitivity can reach 1/(2N^(1/2)l). In addition, by employing another construction of an SU(1,1) interferometer where the pump beam has OAM, with the same injection of an SU(1,1) interferometer, the sensitivity of the angular rotation measurement can be improved by a factor of 2, reaching 1/(4Nl). The results confirm the potential of this technology for precision measurements in angular rotation measurements.展开更多
The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryo...The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.展开更多
In this study,an innovative technique is introduced to significantly enhance the sensitivity of electronic speckle pattern interferometry(ESPI)for the dynamic assessment of specular(mirrorlike)object deformations.By u...In this study,an innovative technique is introduced to significantly enhance the sensitivity of electronic speckle pattern interferometry(ESPI)for the dynamic assessment of specular(mirrorlike)object deformations.By utilizing a common-path illumination strategy,wherein illumination and observation beams are precisely aligned,this method effectively doubles the optical path difference,leading to a twofold increase in measurement sensitivity.In addition,this method mitigates the effects of speckle noise on the measurement of minor deformations,expanding the applications of ESPI.Theoretical and experimental evaluations corroborate the efficacy of this approach.展开更多
Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper ...Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/re. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No. 20 steel plate. The proposed method has laid a foundation for further practical engineering application.展开更多
The literature mentions multiple factors that can affect the accuracy of estimating the project duration in highway construction,such as weather,location,and soil conditions.However,there are other factors that have n...The literature mentions multiple factors that can affect the accuracy of estimating the project duration in highway construction,such as weather,location,and soil conditions.However,there are other factors that have not been explored,yet they can have significant impact on the accuracy of the project time estimate.Recently,TxDOT raised a concern regarding the importance of the proper estimating of the lead/lag times in project schedules.These lead/lag times are often determined based on the engineer’s experience.However,inaccurate estimates of the lead/lag time can result in unrealistic project durations.In order to investigate this claim,the study utilizes four time sensitivity measures(TSM),namely the Criticality Index(CI),Significance Index(SI),Cruciality Index(CRI),and the Schedule Sensitivity Index(SSI)to statistically analyze and draw conclusions regarding the impact of the lead/lag time estimates on the total duration in highway projects.An Excel-based scheduling software was developed with Monte Carlo simulation capabilities to calculate these TSM.The results from this paper show that the variability of some lead/lag times can significantly impact the accuracy of the estimated total project duration.It was concluded that the current practices used for estimating the lead/lag times are insufficient.As such,it is recommended to utilize more robust methods,such as the time sensitivity measures,to accurately estimate the lead/lad times in the projects scheduled.展开更多
Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output ...Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output is beyond the traditional GSA techniques.To fully address this issue,in this work,two regional moment-independent importance measures,Regional Importance Measure based on Probability Density Function(RIMPDF) and Regional Importance Measure based on Cumulative Distribution Function(RIMCDF),are introduced to find out the contributions of specific regions of an input to the whole output distribution.The two regional importance measures prove to be reasonable supplements of the traditional GSA techniques.The ideas of RIMPDF and RIMCDF are applied in two engineering examples to demonstrate that the regional moment-independent importance analysis can add more information concerning the contributions of model inputs.展开更多
An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle...An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.展开更多
基金supported by the fund of Beijing Municipal Commission of Education(Nos.22019821001 and KM202210017001)the Natural Science Foundation of Henan Province(No.222300420253).
文摘This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.
基金National Natural Science Foundation of China(NSFC)(11774286,11374238,11534008,11574247)
文摘We investigate the sensitivity of the angular rotation measurement with the method of homodyne detection in SU(2) and SU(1,1) interferometers by employing orbital angular momentum(OAM). By combining a coherent beam with a vacuum beam in an SU(2) interferometer, we get the sensitivity of the angular rotation measurement as 1/(2N^(1/2)l). We can surpass the limit of the angular rotation measurement in an SU(1,1) interferometer by combining a coherent beam with a vacuum beam or a squeezed vacuum beam when the probe beam has OAM. Without injection, the sensitivity can reach 1/(2N^(1/2)l). In addition, by employing another construction of an SU(1,1) interferometer where the pump beam has OAM, with the same injection of an SU(1,1) interferometer, the sensitivity of the angular rotation measurement can be improved by a factor of 2, reaching 1/(4Nl). The results confirm the potential of this technology for precision measurements in angular rotation measurements.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11302225,11121202 and 11327802the National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No 2013GB110002the Postdoctoral Science Foundation of China under Grant No 2014M560820
文摘The strain and temperature sensing performance of fiber-optic Bragg gratings (FBGs) with soft polymeric coating, which can be used to sense internal strain in superconducting coils, are evaluated under variable cryogenic field and magnetic field. The response to a temperature and strain change of coated-soft polymeric FBGs is tested by comparing with those of coated-metal FBGs. The results indicate that the coated-soft polymeric FBGs can freely detect temperature and thermal strain, their At variable magnetic field, the tested results indicate accuracy and repeatability are also discussed in detail. that the cross-coupling effects of FBGs with different matrixes are not negligible to measure electromagnetic strain during fast excitation. The present results are expected to be able to provide basis measurements on the strain of pulsed superconducting magnet/cable (cable- around-conduit conductors, cable-in-conduit conductors), independently or utilized together with other strain measurement methods.
基金supported by the National Natural Science Foundation of China(Nos.52375536 and 52375535)the Key Research and Development Program of Jiangxi Province(No.20223BBE51010)。
文摘In this study,an innovative technique is introduced to significantly enhance the sensitivity of electronic speckle pattern interferometry(ESPI)for the dynamic assessment of specular(mirrorlike)object deformations.By utilizing a common-path illumination strategy,wherein illumination and observation beams are precisely aligned,this method effectively doubles the optical path difference,leading to a twofold increase in measurement sensitivity.In addition,this method mitigates the effects of speckle noise on the measurement of minor deformations,expanding the applications of ESPI.Theoretical and experimental evaluations corroborate the efficacy of this approach.
基金Supported by the National Natural Science Foundation of China(51275048)
文摘Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interfer- ence, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/re. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No. 20 steel plate. The proposed method has laid a foundation for further practical engineering application.
文摘The literature mentions multiple factors that can affect the accuracy of estimating the project duration in highway construction,such as weather,location,and soil conditions.However,there are other factors that have not been explored,yet they can have significant impact on the accuracy of the project time estimate.Recently,TxDOT raised a concern regarding the importance of the proper estimating of the lead/lag times in project schedules.These lead/lag times are often determined based on the engineer’s experience.However,inaccurate estimates of the lead/lag time can result in unrealistic project durations.In order to investigate this claim,the study utilizes four time sensitivity measures(TSM),namely the Criticality Index(CI),Significance Index(SI),Cruciality Index(CRI),and the Schedule Sensitivity Index(SSI)to statistically analyze and draw conclusions regarding the impact of the lead/lag time estimates on the total duration in highway projects.An Excel-based scheduling software was developed with Monte Carlo simulation capabilities to calculate these TSM.The results from this paper show that the variability of some lead/lag times can significantly impact the accuracy of the estimated total project duration.It was concluded that the current practices used for estimating the lead/lag times are insufficient.As such,it is recommended to utilize more robust methods,such as the time sensitivity measures,to accurately estimate the lead/lad times in the projects scheduled.
基金supported by the National Natural Science Foundation of China(No.NSFC51608446)the Fundamental Research Fund for Central Universities of China(No.3102016ZY015)
文摘Traditional Global Sensitivity Analysis(GSA) focuses on ranking inputs according to their contributions to the output uncertainty.However,information about how the specific regions inside an input affect the output is beyond the traditional GSA techniques.To fully address this issue,in this work,two regional moment-independent importance measures,Regional Importance Measure based on Probability Density Function(RIMPDF) and Regional Importance Measure based on Cumulative Distribution Function(RIMCDF),are introduced to find out the contributions of specific regions of an input to the whole output distribution.The two regional importance measures prove to be reasonable supplements of the traditional GSA techniques.The ideas of RIMPDF and RIMCDF are applied in two engineering examples to demonstrate that the regional moment-independent importance analysis can add more information concerning the contributions of model inputs.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60578051.
文摘An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.