The influence of swelling time, temperature, NaCl concentration and polymer micro-gel concentration on rheological properties of polymer micro-gel dispersions was studied by using a HAAKE rheometer. The results showed...The influence of swelling time, temperature, NaCl concentration and polymer micro-gel concentration on rheological properties of polymer micro-gel dispersions was studied by using a HAAKE rheometer. The results showed that with increasing swelling time and NaCl concentration, the polymer micro-gel dispersions changed from a shear-thickening fluid to a Newtonian fluid. The polymer micro-gel dispersion show shear-thinning in non-saline water. At higher swelling temperature, the time of the polymer micro-gel dispersion showing shear-thickening was shorter. With increasing polymer micro-gel concentration, the dispersion changed from shear-thickening to shear-thinning.展开更多
The effects of L-phenylalanine (L-Phe) on the synthesis ofpoly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (poly(Bis-co-4-VP)) (micro)gels by γ-ray irradiation were studied. The addition of L-Phe could...The effects of L-phenylalanine (L-Phe) on the synthesis ofpoly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (poly(Bis-co-4-VP)) (micro)gels by γ-ray irradiation were studied. The addition of L-Phe could not only decrease the gelation dose (Dg) of the synthesis obviously, but also transform the morphology of copolymer from microgel to gel. In addition, the swelling ability of the (micro)gels was also affected in the presence of L-Phe. The decrease of Dg was ascribed to the effect of pH, while the transformation of the morphology was ascribed to the effect of L-Phe on the stability of the poly(Bis-co-4-VP) microgel. Such an effect was confirmed further as compared with the effects of L-alanine, L-glutamic acid, L-arginine, sulfuric acid and aqueous ammonia.展开更多
Al2O3-Y2O3 nano- and micro-composite coatings were deposited on Fe-9Cr-Mo substrates by using sol-gel composite coating technology. The processing includes dipping samples in a sol-gel solution dispersed with fine cer...Al2O3-Y2O3 nano- and micro-composite coatings were deposited on Fe-9Cr-Mo substrates by using sol-gel composite coating technology. The processing includes dipping samples in a sol-gel solution dispersed with fine ceramic powders, which are prepared by high-energy ball milling. High-resolution microscopy (FE-SEM) analyses show that the coating is composed of composite particle clusters with an average diameter of 1μm, and the coating is relatively dense without cracking during drying and sintering stages. XRD analyses show that the oxide coating is mainly composed of α-Al2O3 and γ-Al2O3. The oxidation tests performed at 600℃ in air show that the coatings are provided with much improved resistance against high temperature oxidation and scale spallation. It is indicated that nano-structured composite particles and reactive elements are integrated into the coatings, which plays an important role in preventing agglomeration of nano-particles and initiation of cracks.展开更多
Porous silica xerogel materials have been developed to use as drug-release agents to be implanted directly in or near cancerous tissues. In order to test the capacity of the materials to absorb and then to release med...Porous silica xerogel materials have been developed to use as drug-release agents to be implanted directly in or near cancerous tissues. In order to test the capacity of the materials to absorb and then to release medicinal substances, a battery of examinations (UV and visible micro-Raman, porosity measurements, UV-visible absorption spectra) have been made using test drug molecules (clotrimazole, primaquine diphosphate and the anti-cancer agent vinblastine sulphate). Results show that the molecules can be post-doped into the gels and the Raman data provide indications of the best conditions for detecting the substances absorbed in the gels. Spectroscopic results show that the drug molecules are released by the xerogel over a period of 10 days. These results are promising for the development of these materials as drug-release agents.展开更多
文摘The influence of swelling time, temperature, NaCl concentration and polymer micro-gel concentration on rheological properties of polymer micro-gel dispersions was studied by using a HAAKE rheometer. The results showed that with increasing swelling time and NaCl concentration, the polymer micro-gel dispersions changed from a shear-thickening fluid to a Newtonian fluid. The polymer micro-gel dispersion show shear-thinning in non-saline water. At higher swelling temperature, the time of the polymer micro-gel dispersion showing shear-thickening was shorter. With increasing polymer micro-gel concentration, the dispersion changed from shear-thickening to shear-thinning.
基金This work was supported by the National Natural Science Foundation of China(Nos.90206020 and 29901001).
文摘The effects of L-phenylalanine (L-Phe) on the synthesis ofpoly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (poly(Bis-co-4-VP)) (micro)gels by γ-ray irradiation were studied. The addition of L-Phe could not only decrease the gelation dose (Dg) of the synthesis obviously, but also transform the morphology of copolymer from microgel to gel. In addition, the swelling ability of the (micro)gels was also affected in the presence of L-Phe. The decrease of Dg was ascribed to the effect of pH, while the transformation of the morphology was ascribed to the effect of L-Phe on the stability of the poly(Bis-co-4-VP) microgel. Such an effect was confirmed further as compared with the effects of L-alanine, L-glutamic acid, L-arginine, sulfuric acid and aqueous ammonia.
基金Project supported by the National Natural Science Foundation of China (50271010)the Doctorial Foundation of JinanUniversity (B0606)
文摘Al2O3-Y2O3 nano- and micro-composite coatings were deposited on Fe-9Cr-Mo substrates by using sol-gel composite coating technology. The processing includes dipping samples in a sol-gel solution dispersed with fine ceramic powders, which are prepared by high-energy ball milling. High-resolution microscopy (FE-SEM) analyses show that the coating is composed of composite particle clusters with an average diameter of 1μm, and the coating is relatively dense without cracking during drying and sintering stages. XRD analyses show that the oxide coating is mainly composed of α-Al2O3 and γ-Al2O3. The oxidation tests performed at 600℃ in air show that the coatings are provided with much improved resistance against high temperature oxidation and scale spallation. It is indicated that nano-structured composite particles and reactive elements are integrated into the coatings, which plays an important role in preventing agglomeration of nano-particles and initiation of cracks.
文摘Porous silica xerogel materials have been developed to use as drug-release agents to be implanted directly in or near cancerous tissues. In order to test the capacity of the materials to absorb and then to release medicinal substances, a battery of examinations (UV and visible micro-Raman, porosity measurements, UV-visible absorption spectra) have been made using test drug molecules (clotrimazole, primaquine diphosphate and the anti-cancer agent vinblastine sulphate). Results show that the molecules can be post-doped into the gels and the Raman data provide indications of the best conditions for detecting the substances absorbed in the gels. Spectroscopic results show that the drug molecules are released by the xerogel over a period of 10 days. These results are promising for the development of these materials as drug-release agents.