Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimet...Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.展开更多
In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric m...In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.展开更多
The crustal thicknesses and the Poisson’s ratios under the seismic stations can be calculated by receiver function method with H-κ stacking effectively. But the stacking results are affected to some extent by the av...The crustal thicknesses and the Poisson’s ratios under the seismic stations can be calculated by receiver function method with H-κ stacking effectively. But the stacking results are affected to some extent by the average crustal P-wave velocity. To eliminate this effect and get more accurate crustal structure along the Zhenkang-Luxi deep seismic sounding profile which lies in Yunnan Province, we calculate the receiver functions from the teleseismic events recorded by 11 temporary stations as well as 5 permanent ones along the profile and carry out the stacking with Vp obtained from the profile in this study. Our study shows that the crustal thicknesses along the Zhenkang-Luxi profile range from 34.8 km to 41.8 km with an average of 39 km. The crust is thicker in the middle part of the profile and thinner in both sides in general. Dramatic changes of crustal thickness about 3 km are detected across both the Lancangjiang fault and the Xiaojiang fault, which implies that these faults cut through the Moho. The lowest Poisson’s ratio under the stations is 0.22 and the highest is 0.27 with the mean of 0.25, which is lower than the global average value 0.27 in the continental crust. It suggests that most of the crust along the profile lacks mafic component, but contains more felsic substance. The low Poisson’s ratio also indicates that there is no satisfying condition for partial melting. We deduce that the material flow in the middle-lower crust in the southeastern margin of the Tibetan plateau may occur only in the north region of 24°N.展开更多
基金supported by the National Natural Science Foundation of China(40704029 40376016)+1 种基金China International Science and Technology Cooperation Project (2006DFB21620)the Young People Marine Science Foundation of State Oceanic Administration (2005304)
文摘Rare earth elements(REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method.The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE(LREE)/heavy REE(HREE) ratio of 4.84.The shale-normalized REE patterns showed positive Ce anomalies.The total content of strictly trivalent REEs increased with water depth.The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m.The change in REE with water depth could be explained by two processes:adsorptive scavenging by setting matters and behaviors of REE in seawater.However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux.The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.
文摘In the present paper, iodine (I), iron (Fe), manganese (Mn), cobalt (Co), phosphorus (P) and calcium (Ca) contents in three ferromanganese crusts from the Pacific Ocean are measured by spectrophotometric method and inductively coupled plasma atomic emission spectrometers (ICP-AES) to investigate the contents and distribution of iodine in ferromanganese crusts. The results show that iodine contents in three crusts vary between 27.1 and 836 mg/kg, with an average of 172 mg/kg, and the profile of iodine in the three crusts all exhibits a two-stage distribution zone: a young non-phosphatized zone and an old phosphatized zone that is rich in I, P and Ca. The iodine content ratios of old to young zone in MP5D44, CXD62-1 and CXD08-1 are 2.3, 3.4 and 13.7, respectively. The boundary depths of two-stage zone in MP5D44, CXD62-1 and CXD08-1 locate at 4.0 cm, 2.5 cm and 3.75 cm, respectively, and the time of iodine mutation in three crusts ranges from 17-37 Ma derived from 129I dating and Co empirical formula, which is consistent with the times of Cenozoic phosphatization events. The present study shows that the intensity of phosphatization is the main responsible for the distribution pattern of iodine in the crusts on the basis of the correlation analysis. Consequently, iodine is a sensitive indicator for phosphatization.
基金supported by the Seismic Youth Funding of Geophysical Exploration Center,China Earthquake Administration (YFGEC2016003)the National Natural Science Foundation of China (41774070 and 41404049)
文摘The crustal thicknesses and the Poisson’s ratios under the seismic stations can be calculated by receiver function method with H-κ stacking effectively. But the stacking results are affected to some extent by the average crustal P-wave velocity. To eliminate this effect and get more accurate crustal structure along the Zhenkang-Luxi deep seismic sounding profile which lies in Yunnan Province, we calculate the receiver functions from the teleseismic events recorded by 11 temporary stations as well as 5 permanent ones along the profile and carry out the stacking with Vp obtained from the profile in this study. Our study shows that the crustal thicknesses along the Zhenkang-Luxi profile range from 34.8 km to 41.8 km with an average of 39 km. The crust is thicker in the middle part of the profile and thinner in both sides in general. Dramatic changes of crustal thickness about 3 km are detected across both the Lancangjiang fault and the Xiaojiang fault, which implies that these faults cut through the Moho. The lowest Poisson’s ratio under the stations is 0.22 and the highest is 0.27 with the mean of 0.25, which is lower than the global average value 0.27 in the continental crust. It suggests that most of the crust along the profile lacks mafic component, but contains more felsic substance. The low Poisson’s ratio also indicates that there is no satisfying condition for partial melting. We deduce that the material flow in the middle-lower crust in the southeastern margin of the Tibetan plateau may occur only in the north region of 24°N.