期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EQUIVALENT NORMAL CURVATURE APPROACH MILLING MODEL OF MACHINING FREEFORM SURFACES 被引量:5
1
作者 YI Xianzhong MA Weiguo +2 位作者 QIHaiying YAN Zesheng GAO Deli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期52-57,共6页
A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind m... A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given. 展开更多
关键词 Equivalent normal curvature milling model Whirlwind milling method Freeform surfaces 5-axis CNC machine Differential geometry
下载PDF
Milling Force Model for Aviation Aluminum Alloy: Academic Insight and Perspective Analysis 被引量:14
2
作者 Zhenjing Duan Changhe Li +13 位作者 Wenfeng Ding Yanbin Zhang Min Yang Teng Gao Huajun Cao Xuefeng Xu Dazhong Wang Cong Mao Hao Nan Li Gupta Munish Kumar Zafar Said Sujan Debnath Muhammad Jamil Hafiz Muhammad Ali 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期54-88,共35页
Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is processed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation ... Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is processed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy.The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters,material mechanical properties,machine tools,and other parameters.In particular,milling force is the crucial factor to determine material removal and workpiece surface integrity.However,establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system.The research progress of cutting force model is reviewed from three modeling methods:empirical model,finite element simulation,and instantaneous milling force model.The problems of cutting force modeling are also determined.In view of these problems,the future work direction is proposed in the following four aspects:(1)high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth,which easily produces high residual stress.The residual stress should be analyzed under this particular condition.(2)Multiple factors(e.g.,eccentric swing milling parameters,lubrication conditions,tools,tool and workpiece deformation,and size effect)should be considered comprehensively when modeling instantaneous milling forces,especially for micro milling and complex surface machining.(3)The database of milling force model,including the corresponding workpiece materials,working condition,cutting tools(geometric figures and coatings),and other parameters,should be established.(4)The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling.(5)The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication(mql)and nanofluid mql should be predicted. 展开更多
关键词 milling Aluminum alloy Force model Empirical model Finite element model Instantaneous milling force model
下载PDF
Spin-flop transition and Zeeman effect of defect-localized bound states in the antiferromagnetic topological insulator MnBi_(2)Te_(4)
3
作者 Guojian Qian Mengzhu Shi +6 位作者 Hui Chen Shiyu Zhu Jiawei Hu Zihao Huang Yuan Huang Xian-Hui Chen Hong-Jun Gao 《Nano Research》 SCIE EI CSCD 2023年第1期1101-1106,共6页
The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi_(2)T... The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi_(2)Te_(4).By using low-temperature scanning tunneling microscopy and spectroscopy,we observed a localized bound state around the Mn-Bi antisite defect at the Teterminated surface of the antiferromagnetic topological insulator MnBi_(2)Te_(4).When applying a magnetic field perpendicular to the surface(Bz)from–1.5 to 3.0 T,the bound state shifts linearly to a lower energy with increasing Bz,which is attributed to the Zeeman effect.Remarkably,when applying a large range of Bz from–8.0 to 8.0 T,the magnetic field induced reorientation of surface magnetic moments results in an abrupt jump in the local density of states(LDOS),which is characterized by LDOSchange-ratio■quantitatively.Interestingly,two asymmetric critical field,–2.0 and 4.0 T determined by the two peaks in■are observed,which is consistent with simulated results according to a Mills-model,describing a surface spin flop transition(SSF).Our results provide a new flatform for studying the interplay between magnetic order and topological phases in magnetic topological materials. 展开更多
关键词 antiferromagnetic topological insulators MnBi_(2)Te_(4) scanning tunneling microscope Mills model surface spin flop transition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部