The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics ...The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ...Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.展开更多
The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of mo...The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of monazite or bastnaesite is explored by modern measuring techniques,such as IR and ESCA,etc.展开更多
The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemist...The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.展开更多
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts ...The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.展开更多
Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prep...Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prepared using fused corundum as the matrix material,and the effect of varying silica powder contents on the properties of the alumina-based ceramic cores,including the sintering shrinkage,the flexural strength,and the high temperature deformation was investigated.The mineralization mechanisms of the silica on the alumina-based ceramic core were also analyzed.The optimum addition amount of silica in this experiment is 8% in weight.At that moment,the aluminum-based core has both a low sintering shrinkage coefficient of 0.66% and better properties:the room temperature flexural strength is 22.19 MPa,the high temperature flexural strength is 21.54 MPa,the high temperature deformation is 0.93 mm,and the residual flexural strength is 47.41 MPa.展开更多
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su...An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.展开更多
The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil...The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.展开更多
That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,c...That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,coal and uranium in the same basin.Especially,this phenomenon is most typical in the Central-east Asia energy basins.Across China,Mongolia and some central Asian countries,the giant Central-east Asia metallogenetic domain(CEAMD)stretches more than 6,000 km from Songliao Basin of China in the east to the Caspian Sea in the west.The multi-energy minerals distribution characteristics of the domain include:their spatial distribution is complicated and ordered;the ore-bearing horizon relates closely to the geographical region;the accumulation/mineralization and localization time is the same or close;the occurrence setting and accumulation/mineralization have close correlation;and they have rich provenance for all the minerals.All of these imply that they have close relations between each other under a unified geodynamic background.The exogenetic uranium mineralization process in CEAMD can be divided into five phases using time limits of 100 Ma,(50±2)Ma,20±(2―4)Ma,8―5 Ma.The major mineralization periods and their differences in each primary uranium-bearing basin are identical to the oil-gas accumulation and localization periods and phases in the same basin,and are also in response to regional tectonics and controlled in general by the regional geodynamic environment.For industrial application and commercial exploitation,it is suggested that an important period for coexistence,accumulation and localization of oil,gas,coal and uranium and their interaction mainly occur in the late/last and post basin evolution.Through generalized analysis and comparison of accumulation/mineralization environment of the energy basins in CEAMD,the authors propose that the relatively stable regional tectonic background and moderate(weaker)structural deformation probably are necessary for formation,coexistence and preservation of large and medium-scaled sandstone-type uranium ore deposits,oil-gas fields and coalfields,while basins in favor of coexistence and accumulation are those intracratonal,intermediary massif basins and corresponding reformed basins.展开更多
基金financially supported by the Natural Science Foundation of China(Grant Nos.42272104,42172094 and 41772076)。
文摘The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
基金partially supported by program for the New Century Excellent Talents in University (No. NCET-08-0833)the National Natural Science Foundation of China (No. 41040027)the Special Fund of Basic Research and Operating Expenses of China University of Mining and Technology, Beijing
文摘Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.
文摘The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of monazite or bastnaesite is explored by modern measuring techniques,such as IR and ESCA,etc.
文摘The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.
基金supported financially by the National Natural Scientific Foundation of China (Grants No. 40872069 and 41173059)the National Basic Research Program of China (973 Program) (Grants No. 2015CB453000)+1 种基金China Geological Survey (Grants No. 12120113095500)the Foundation of China Nuclear Geology (Grants No. 201148)
文摘The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.
基金financially supported by the National Science and Technology Major Project of Aero Engine and Gas Turbine(2017-Ⅶ-0008)。
文摘Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prepared using fused corundum as the matrix material,and the effect of varying silica powder contents on the properties of the alumina-based ceramic cores,including the sintering shrinkage,the flexural strength,and the high temperature deformation was investigated.The mineralization mechanisms of the silica on the alumina-based ceramic core were also analyzed.The optimum addition amount of silica in this experiment is 8% in weight.At that moment,the aluminum-based core has both a low sintering shrinkage coefficient of 0.66% and better properties:the room temperature flexural strength is 22.19 MPa,the high temperature flexural strength is 21.54 MPa,the high temperature deformation is 0.93 mm,and the residual flexural strength is 47.41 MPa.
文摘An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.
文摘The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.
基金Jointly supported by the National Important Basic Research Program of China(Grant No.2003CB214607)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0559)the National Natural Science Foundation of China(Grant No.40372096)
文摘That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil,gas,coal and uranium in the same basin.Especially,this phenomenon is most typical in the Central-east Asia energy basins.Across China,Mongolia and some central Asian countries,the giant Central-east Asia metallogenetic domain(CEAMD)stretches more than 6,000 km from Songliao Basin of China in the east to the Caspian Sea in the west.The multi-energy minerals distribution characteristics of the domain include:their spatial distribution is complicated and ordered;the ore-bearing horizon relates closely to the geographical region;the accumulation/mineralization and localization time is the same or close;the occurrence setting and accumulation/mineralization have close correlation;and they have rich provenance for all the minerals.All of these imply that they have close relations between each other under a unified geodynamic background.The exogenetic uranium mineralization process in CEAMD can be divided into five phases using time limits of 100 Ma,(50±2)Ma,20±(2―4)Ma,8―5 Ma.The major mineralization periods and their differences in each primary uranium-bearing basin are identical to the oil-gas accumulation and localization periods and phases in the same basin,and are also in response to regional tectonics and controlled in general by the regional geodynamic environment.For industrial application and commercial exploitation,it is suggested that an important period for coexistence,accumulation and localization of oil,gas,coal and uranium and their interaction mainly occur in the late/last and post basin evolution.Through generalized analysis and comparison of accumulation/mineralization environment of the energy basins in CEAMD,the authors propose that the relatively stable regional tectonic background and moderate(weaker)structural deformation probably are necessary for formation,coexistence and preservation of large and medium-scaled sandstone-type uranium ore deposits,oil-gas fields and coalfields,while basins in favor of coexistence and accumulation are those intracratonal,intermediary massif basins and corresponding reformed basins.