期刊文献+
共找到18,665篇文章
< 1 2 250 >
每页显示 20 50 100
Latest assessment methods for mitochondrial homeostasis in cognitive diseases
1
作者 Wei You Yue Li +4 位作者 Kaixi Liu Xinning Mi Yitong Li Xiangyang Guo Zhengqian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期754-768,共15页
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub... Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy). 展开更多
关键词 cognitive disorders mitochondrial dysfunction mitochondrial energy metabolism mitochondrial dynamics mitochondrial transport MITOPHAGY mitochondrial biogenesis oxidative stress calcium homeostasis
下载PDF
Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage
2
作者 Jiatong Zhang Qi Zhu +4 位作者 Jie Wang Zheng Peng Zong Zhuang Chunhua Hang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期825-832,共8页
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto... The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage. 展开更多
关键词 mitochondrial biogenesis mitochondrial dynamics mitochondrial dysfunction mitochondrial fission and fusion mitochondrial quality control MITOPHAGY subarachnoid hemorrhage
下载PDF
Mitochondrial carrier homolog 2 increases malignant phenotype of human gastric epithelial cells and promotes proliferation,invasion,and migration of gastric cancer cells
3
作者 Jing-Wen Zhang Ling-Yan Huang +3 位作者 Ya-Ning Li Ying Tian Jia Yu Xiao-Fei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期991-1005,共15页
BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determi... BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determine the role of MTCH2 in gastric cancer.METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues,constructed MTCH2-overexpressing and MTCH2-knockdown cell models,and evaluated the proliferation,migration,and invasion of human gastric epithelial cells(GES-1)and human gastric cancer cells(AGS)cells.The mito-chondrial membrane potential(MMP),mitochondrial permeability transformation pore(mPTP)and ATP fluorescence probe were used to detect mitochondrial function.Mitochondrial function and ATP synthase protein levels were detected via Western blotting.RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues.Overexpression of MTCH2 promoted colony formation,invasion,migration,MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis;knockdown of MTCH2 had the opposite effect,promoting overactivation of the mPTP and promoting apoptosis.CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation,invasion,and migration of gastric cancer cells by regulating mitochondrial function,providing a basis for targeted therapy for gastric cancer cells. 展开更多
关键词 Gastric cancer mitochondrial carrier homolog 2 ATP synthase ATP2A2 mitochondrial permeability transformation pore
下载PDF
Resveratrol combats chronic diseases through enhancing mitochondrial quality
4
作者 Weichu Tao Hu Zhang +1 位作者 Xia Jiang Ning Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期597-610,共14页
Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammat... Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammation and anti-oxidation functions,and improving mitochondrial quality.Chronic diseases as non-communicable diseases are mainly caused by multiple factors,such as physiological decline and dysfunction in the body,and have become a significant challenge on public health worldwide.It is worth noting that chronic diseases such as Alzheimer's disease(AD),Parkinson's disease(PD),muscle atrophy,cardiovascular disease,obesity,and cancer are accompanied by abnormal mitochondrial function.Therefore,targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases.Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria,and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions.In this article,current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized,which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases. 展开更多
关键词 RESVERATROL Functional food mitochondrial quality Chronic disease ANTI-INFLAMMATION ANTI-OXIDATION
下载PDF
Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway
5
作者 Li-wei ZHANG Hong-qi FENG +1 位作者 Song-bo FU Dian-jun SUN 《Current Medical Science》 SCIE CAS 2024年第1期93-101,共9页
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ... Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway. 展开更多
关键词 Keshan disease low selenium and low protein myocardial mitochondrial injury PTEN induced putative kinase 1(PINK1)/Parkin mitochondrial autophagy
下载PDF
Molecular phylogenetic relationships based on mitochondrial genomes of novel deep-sea corals(Octocorallia:Alcyonacea):Insights into slow evolution and adaptation to extreme deep-sea environments
6
作者 Zhan-Fei Wei Kai-Wen Ta +6 位作者 Nan-Nan Zhang Shan-Shan Liu Liang Meng Kai-Qiang Liu Chong-Yang Cai Xiao-Tong Peng Chang-Wei Shao 《Zoological Research》 SCIE CSCD 2024年第1期215-225,共11页
A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomi... A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomic characteristics,morphological examination,and sclerite scanning electron microscopy,the samples were categorized into four suborders(Calcaxonia,Holaxonia,Scleraxonia,and Stolonifera),and identified as 9 possible new cold-water coral species.Assessments of GC-skew dissimilarity,phylogenetic distance,and average nucleotide identity(ANI)revealed a slow evolutionary rate for the octocoral mitochondrial sequences.The nonsynonymous(Ka)to synonymous(Ks)substitution ratio(Ka/Ks)suggested that the 14 protein-coding genes(PCGs)were under purifying selection,likely due to specific deep-sea environmental pressures.Correlation analysis of the median Ka/Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b(cyt b)and DNA mismatch repair protein(mutS)may be influenced by environmental factors in the context of deep-sea species formation.This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals. 展开更多
关键词 mitochondrial genome Alcyonacea Ka/Ks evolution Environmental factors
下载PDF
Generation of mitochondrial replacement monkeys by female pronucleus transfer
7
作者 Chun-Yang Li Xing-Chen Liu +6 位作者 Yu-Zhuo Li Yan Wang Yan-Hong Nie Yu-Ting Xu Xiao-Tong Zhang Yong Lu Qiang Sun 《Zoological Research》 SCIE CSCD 2024年第2期292-298,共7页
Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising st... Mutations in mitochondrial DNA(mtDNA)are maternally inherited and have the potential to cause severe disorders.Mitochondrial replacement therapies,including spindle,polar body,and pronuclear transfers,are promising strategies for preventing the hereditary transmission of mtDNA diseases.While pronuclear transfer has been used to generate mitochondrial replacement mouse models and human embryos,its application in non-human primates has not been previously reported.In this study,we successfully generated four healthy cynomolgus monkeys(Macaca fascicularis)via female pronuclear transfer.These individuals all survived for more than two years and exhibited minimal mtDNA carryover(3.8%–6.7%),as well as relatively stable mtDNA heteroplasmy dynamics during development.The successful establishment of this nonhuman primate model highlights the considerable potential of pronuclear transfer in reducing the risk of inherited mtDNA diseases and provides a valuable preclinical research model for advancing mitochondrial replacement therapies in humans. 展开更多
关键词 Non-human primates mitochondrial replacement Female pronuclear transfer
下载PDF
Characterization,expression dynamics,and potential function of OPA1 for regulation of mitochondrial morphology during spermiogenesis in Phascolosoma esculenta
8
作者 Xinming GAO Binbin FENG +4 位作者 Chen DU Congcong HOU Shan JIN Daojun TANG Junquan ZHU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期187-200,共14页
Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular c... Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular characteristics,expression dynamics and subcellular localization of optic atrophy protein 1(OPA1),a mitochondrial fusion and cristae maintenance-related protein,to reveal the possible regulatory mechanisms underlying mitochondrial morphology in Phascolosoma esculenta spermiogenesis.The full-length cDNA of the P.esculenta opa1 gene(Pe-opa1)is 3743 bp in length and encodes 975 amino acids.The Pe-OPA1 protein is highly conservative and includes a transmembrane domain,a GTPase domain,two helical bundle domains,and a lipid-interacting stalk.Gene and protein expression was higher in the coelomic fluid(a site of spermatid development)of male P.esculenta and increased first and then decreased from March to December.Moreover,their expression during the breeding stage was significantly higher than during the non-breeding stage,suggesting that Pe-OPA1 is involved in P.esculenta reproduction.The Pe-OPA1 protein was more abundant in components consisting of many spermatids than in components without,indicating that Pe-OPA1 mainly plays a role in the spermatid in coelomic fluid.Moreover,Pe-OPA1 was mainly detected in the spermatid mitochondria.Immunofluorescence experiments showed that the Pe-OPA1 are constitutively expressed and co-localized with mitochondria during spermiogenesis,suggesting its involvement in P.esculenta spermiogenesis.These results provide evidence for Pe-OPA1's involvement in the regulation of mitochondrial morphology during spermiogenesis. 展开更多
关键词 optic atrophy protein 1(OPA1) SPERMIOGENESIS Phascolosoma esculenta mitochondrial dynamics SPERMATID
下载PDF
Prohibitin 1 inhibits cell proliferation and induces apoptosis via the p53-mediated mitochondrial pathway in vitro
9
作者 Juan-Juan Shi Yi-Kai Wang +9 位作者 Mu-Qi Wang Jiang Deng Ning Gao Mei Li Ya-Ping Li Xin Zhang Xiao-Li Jia Xiong-Tao Liu Shuang-Suo Dang Wen-Jun Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期398-413,共16页
BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis... BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway. 展开更多
关键词 Prohibitin 1 Hepatocellular carcinoma cells APOPTOSIS Cell cycle mitochondrial pathway
下载PDF
Research progress in mitochondrial autophagy mediated by BNIP3
10
作者 HUANG Jing-zhu CHENG Qiu-chen +2 位作者 LI Fu-jian Liu Ze-feng Zhang Guo 《Journal of Hainan Medical University》 CAS 2024年第1期61-67,共7页
Mitochondrial autophagy is widely found in mammals,and plays an important role in maintaining mitochondrial balance and mitochondrial quality control in cells.In this review,we reviewed the research progress of BNIP3-... Mitochondrial autophagy is widely found in mammals,and plays an important role in maintaining mitochondrial balance and mitochondrial quality control in cells.In this review,we reviewed the research progress of BNIP3-mediated mitochondrial autophagy and diseases in recent 5 years,providing new ideas for clinical diagnosis and treatment. 展开更多
关键词 BNIP3 mitochondrial autophagy Research progress
下载PDF
YBX1 inhibits mitochondrial-mediated apoptosis in ischemic heart through the PI3K/AKT signaling pathway
11
作者 Fangfang Bi Miao Cao +10 位作者 Yuquan Wang Qingming Pan Zehong Jing Danyang Bing Lifang Lyu Tong Yu Tianyu Li Xuelian Li Haihai Liang Hongli Shan Yuhong Zhou 《Frigid Zone Medicine》 2024年第1期51-64,共14页
Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by... Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI. 展开更多
关键词 YBX1 PI3K/AKT apoptosis mitochondrial function myocardial infarction
原文传递
Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer's disease
12
作者 Bo Li Yujie Chen +10 位作者 Yan Zhou Xuanran Feng Guojun Gu Shuang Han Nianhao Cheng Yawen Sun Yiming Zhang Jiahui Cheng Qi Zhang Wei Zhang Jianhui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1593-1601,共9页
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime... Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis. 展开更多
关键词 Alzheimer’s disease mitochondrial biogenesis neural stem cell-derived exosome SIRT1-PGC1α regional brain distribution whole brain clearing and imaging
下载PDF
Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction
13
作者 Cheng-Jin Ai Ling-Juan Chen +2 位作者 Li-Xuan Guo Ya-Ping Wang Zi-Yi Zhao 《World Journal of Stem Cells》 SCIE 2024年第4期444-458,共15页
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against... BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML. 展开更多
关键词 Leukemia stem cells Gossypol acetic acid Reactive oxygen species mitochondrial dysfunction Interleukin 6/janus kinase 1/signal transducer and activator of transcription 3 signaling
下载PDF
Crosslink between mutations in mitochondrial genes and brain disorders:implications for mitochondrial-targeted therapeutic interventions 被引量:1
14
作者 Jaspreet Kalra 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期94-101,共8页
At the present,association of mitochondrial dysfunction and progression of neurological disorders has gained significant attention.Defects in mitochondrial network dynamics,point mutations,deletions,and interaction of... At the present,association of mitochondrial dysfunction and progression of neurological disorders has gained significant attention.Defects in mitochondrial network dynamics,point mutations,deletions,and interaction of pathogenomic proteins with mitochondria are some of the possible underlying mechanisms involved in these neurological disorders.Mitochondrial genetics,defects in mitochondrial oxidative phosphorylation machinery,and reactive oxygen species production might share common crosstalk in the progression of these neurological disorders.It is of significant interests to explore and develop therapeutic strategies aimed at correcting mitochondrial abnormalities.This review provided insights on mitochondrial dysfunction/mutations involved in the progression of Alzheimer’s disease,Huntington’s disease,and epilepsy with a special focus on Parkinson’s disease pathology.Along with the deleterious effects of mitochondrial mutations in aforesaid neurological disorders,this paper unraveled the available therapeutic strategy,specifically aiming to improve mitochondrial dysfunction,drugs targeting mitochondrial proteins,gene therapies aimed at correcting mutant mtDNA,peptide-based approaches,and lipophilic cations. 展开更多
关键词 adenosine-triphosphate deficiency mitochondrial fission/fusion mitochondrial mutations neurodegenerative disorders oxidative phosphorylation therapeutic interventions
下载PDF
Maternal zinc alleviates tert-butyl hydroperoxide-induced mitochondrial oxidative stress on embryonic development involving the activation of Nrf2/PGC-1αpathway 被引量:1
15
作者 Liang Huang Wei Gao +9 位作者 Xuri He Tong Yuan Huaqi Zhang Xiufen Zhang Wenxuan Zheng Qilin Wu Ju Liu Wence Wang Lin Yang Yongwen Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1730-1743,共14页
Background Mitochondrial dysfunction induced by excessive mitochondrial reactive oxygen species(ROS)damages embryonic development and leads to growth arrest.Objective The purpose of this study is to elucidate whether ... Background Mitochondrial dysfunction induced by excessive mitochondrial reactive oxygen species(ROS)damages embryonic development and leads to growth arrest.Objective The purpose of this study is to elucidate whether maternal zinc(Zn)exert protective effect on oxidative stress targeting mitochondrial function using an avian model.Result In ovo injected tert-butyl hydroperoxide(BHP)increases(P<0.05)hepatic mitochondrial ROS,malondialdehyde(MDA)and 8-hydroxy-2-deoxyguanosine(8-OHdG),and decreases(P<0.05)mitochondrial membrane potential(MMP),mitochondrial DNA(mtDNA)copy number and adenosine triphosphate(ATP)content,contributing to mitochondrial dysfunction.In vivo and in vitro studies revealed that Zn addition enhances(P<0.05)ATP synthesis and metallothionein 4(MT4)content and expression as well as alleviates(P<0.05)the BHP-induced mitochondrial ROS generation,oxidative damage and dysfunction,exerting a protective effect on mitochondrial function by enhancing antioxidant capacity and upregulating the mRNA and protein expressions of Nrf2 and PGC-1α.Conclusions The present study provides a new way to protect offspring against oxidative damage by maternal Zn supplementation through the process of targeting mitochondria involving the activation of Nrf2/PGC-1αsignaling. 展开更多
关键词 Embryonic development Maternal zinc mitochondrial function Oxidative stress
下载PDF
Sirtuin 3 regulation:a target to alleviateβ-hydroxybutyric acid-induced mitochondrial dysfunction in bovine granulosa cells 被引量:1
16
作者 Shanjiang Zhao Jianfei Gong +6 位作者 Yi Wang Nuo Heng Huan Wang Zhihui Hu Haoyu Wang Haobo Zhang Huabin Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1377-1394,共18页
Background During the transition period,the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk,high yielding cows would enter a negative energy balance(NEB... Background During the transition period,the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk,high yielding cows would enter a negative energy balance(NEB)that causes an increase in ketone bodies(KBs)and decrease in reproduction efficiency.The excess concentrations of circulating KBs,represented byβ-hydroxybutyric acid(BHBA),could lead to oxidative damage,which potentially cause injury to follicular granulosa cells(fGCs)and delayed follicular development.Sirtuin 3(Sirt3)regulates mitochondria reactive oxygen species(mitoROS)homeostasis in a beneficial manner;however,the molecular mechanisms underlying its involvement in the BHBA-induced injury of fGCs is poorly understood.The aim of this study was to explore the protection effects and underlying mechanisms of Sirt3 against BHBA overload-induced damage of fGCs.Results Our findings demonstrated that 2.4 mmol/L of BHBA stress increased the levels of mitoROS in bovine fGCs.Further investigations identified the subsequent mitochondrial dysfunction,including an increased abnormal rate of mitochondrial architecture,mitochondrial permeability transition pore(MPTP)opening,reductions in mitochondrial membrane potential(MMP)and Ca^(2+)release;these dysfunctions then triggered the caspase cascade reaction of apoptosis in fGCs.Notably,the overexpression of Sirt3 prior to treatment enhanced mitochondrial autophagy by increasing the expression levels of Beclin-1,thus preventing BHBA-induced mitochondrial oxidative stress and mitochondrial dysfunction in fGCs.Furthermore,our data suggested that the AMPK-mTOR-Beclin-1 pathway may be involved in the protective mechanism of Sirt3 against cellular injury triggered by BHBA stimulation.Conclusions These findings indicate that Sirt3 protects fGCs from BHBA-triggered injury by enhancing autophagy,attenuating oxidative stress and mitochondrial damage.This study provides new strategies to mitigate the fGCs injury caused by excessive BHBA stress in dairy cows with ketosis. 展开更多
关键词 BHBA Dairy cows Granulosa cells KETOSIS mitochondrial function Sirt3
下载PDF
Altered O-GlcNAcylation and mitochondrial dysfunction,a molecular link between brain glucose dysregulation and sporadic Alzheimer's disease 被引量:3
17
作者 Chia-Wei Huang Nicholas C.Rust +1 位作者 Hsueh-Fu Wu Gerald W.Hart 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期779-783,共5页
Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its ... Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its heterogeneity and complexity,the etiology of Alzheimer’s disease,especially sporadic Alzheimer’s disease,remains largely unclear.Compelling evidence suggests that brain glucose hypometabolism,preceding Alzheimer’s disease hallmarks,is involved in the pathogenesis of Alzheimer’s disease.Herein,we discuss the potential causes of reduced glucose uptake and the mechanisms underlying glucose hypometabolism and Alzheimer’s disease pathology.Specifically,decreased O-Glc NAcylation levels by glucose deficiency alter mitochondrial functions and together contribute to Alzheimer’s disease pathogenesis.One major problem with Alzheimer’s disease research is that the disease progresses for several years before the onset of any symptoms,suggesting the critical need for appropriate models to study the molecular changes in the early phase of Alzheimer’s disease progression.Therefore,this review also discusses current available sporadic Alzheimer’s disease models induced by metabolic abnormalities and provides novel directions for establishing a human neuronal sporadic Alzheimer’s disease model that better represents human sporadic Alzheimer’s disease as a metabolic disease. 展开更多
关键词 Alzheimer’s disease amyloid beta BRAIN glucose deficiency glucose uptake HYPOMETABOLISM mitochondrial dysfunction neurodegenerative disease neurons O-GlcNAc Tau
下载PDF
Microvesicles with mitochondrial content are increased in patients with sepsis and associated with inflammatory responses 被引量:1
18
作者 Hai-Jun Zhang Jin-Yi Li +1 位作者 Chao Wang Guo-Qiang Zhong 《World Journal of Clinical Cases》 SCIE 2023年第2期342-356,共15页
BACKGROUND Endothelial activation plays an important role in sepsis-mediated inflammation,but the triggering factors have not been fully elucidated.Microvesicles carrying mitochondrial content(mitoMVs)have been implic... BACKGROUND Endothelial activation plays an important role in sepsis-mediated inflammation,but the triggering factors have not been fully elucidated.Microvesicles carrying mitochondrial content(mitoMVs)have been implicated in several diseases and shown to induce endothelial activation.AIM To explore whether mitoMVs constitute a subset of MVs isolated from plasma of patients with sepsis and contribute to endothelial activation.METHODS MVs were isolated from human plasma and characterized by confocal microscopy and flow cytometry.Proinflammatory cytokines,including interleukin(IL)-6,IL-8 and tumour necrosis factor(TNF)-α,and soluble vascular cell adhesion molecule(sVCAM)-1 were detected by ELISA.Human umbilical vein endothelial cells(HUVECs)were stimulated with the circulating MVs to evaluate their effect on endothelial activation.RESULTS MitoMVs were observed in plasma from patients with sepsis.Compared with those in healthy controls,expression of MVs,mitoMVs,proinflammatory cytokines and sVCAM-1 was increased.The number of mitoMVs was positively associated with TNF-αand sVCAM-1.In vitro,compared with MVs isolated from the plasma of healthy controls,MVs isolated from the plasma of patients with sepsis induced expression of OAS2,RSAD2,and CXCL10 in HUVECs.MitoMVs were taken up by HUVECs,and sonication of MVs significantly reduced the uptake of mitoMVs by HUVECs and expression of the above three type I IFNdependent genes.CONCLUSION MitoMVs are increased in the plasma of patients with sepsis,which induces elevated expression of type I IFN-dependent genes.This suggests that circulating mitoMVs activate the type I IFN signalling pathway in endothelial cells and lead to endothelial activation. 展开更多
关键词 SEPSIS MICROVESICLES MITOCHONDRIA Microvesicles carrying mitochondrial content
下载PDF
Sepsis-induced mitochondrial dysfunction:A narrative review 被引量:2
19
作者 Wagner Nedel Caroline Deutschendorf Luis Valmor Cruz Portela 《World Journal of Critical Care Medicine》 2023年第3期139-152,共14页
Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction.Mitochondrial function has... Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction.Mitochondrial function has been shown to be severely impaired during the early phase of critical illness,with a reduction in biogenesis,increased generation of reactive oxygen species and a decrease in adenosine triphosphate synthesis of up to 50%.Mitochondrial dysfunction can be assessed using mitochondrial DNA concentration and respirometry assays,particularly in peripheral mononuclear cells.Isolation of monocytes and lymphocytes seems to be the most promising strategy for measuring mitochondrial activity in clinical settings because of the ease of collection,sample processing,and clinical relevance of the association between metabolic alterations and deficient immune responses in mononuclear cells.Studies have reported alterations in these variables in patients with sepsis compared with healthy controls and non-septic patients.However,few studies have explored the association between mitochondrial dysfunction in immune mononuclear cells and unfavorable clinical outcomes.An improvement in mitochondrial parameters in sepsis could theoretically serve as a biomarker of clinical recovery and response to oxygen and vasopressor therapies as well as reveal unexplored pathophysiological mechanistic targets.These features highlight the need for further studies on mitochondrial metabolism in immune cells as a feasible tool to evaluate patients in intensive care settings.The evaluation of mitochondrial metabolism is a promising tool for the evaluation and management of critically ill patients,especially those with sepsis.In this article,we explore the pathophysiological aspects,main methods of measurement,and the main studies in this field. 展开更多
关键词 SEPSIS MITOCHONDRIA mitochondrial dysfunction Oxidative phosphorylation INFLAMMATION RESPIROMETRY
下载PDF
Characteristics of traumatic brain injury models:from macroscopic blood flow changes to microscopic mitochondrial changes 被引量:1
20
作者 Ding-Ding Yang Xiang-Dong Wan +8 位作者 An-Di Chen Zi-Qian Yan Yi-Fan Lu Jun-Chen Liu Ya-Zhou Wang Jing Wang Yan Zhao Sheng-Xi Wu Guo-Hong Cai 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2268-2277,共10页
Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model.A strike depth of 1 mm at a certain speed is recommended for a moderate b... Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model.A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of>2 mm is used to induce severe brain injury.However,the different effects and underlying mechanisms of these two model types have not been proven.This study investigated the changes in cerebral blood flow,differences in the degree of cortical damage,and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3,4,and 5 m/s.We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute(7 days)and chronic phases(30 days).The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased,and swelling and bulging of brain tissue,increased vascular permeability,and large-scale exudation occurred.In the 2 mm group,the main pathological changes were decreased cerebral blood flow,brain tissue loss,and cerebral vasospasm occlusion in the injured area.Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group;at 30 days after injury,the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted.Transcriptome sequencing showed that compared with the 1 mm group,the 2 mm group expressed more ferroptosis-related genes.Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7,the mitochondria in both groups shrank and the vacuoles became larger;on day 30,the mitochondria in the 1 mm group became larger,and the vacuoles in the 2 mm group remained enlarged.By analyzing the proportion of mitochondrial subgroups in different groups,we found that the model mice had different patterns of mitochondrial composition at different time periods,suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes.Taken together,differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury.Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines. 展开更多
关键词 cerebral blood flow cognitive impairments controlled cortical impingement ferroptosis mitochondrial dysfunction motor impairments mouse model traumatic brain injury
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部