期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-objective modeling and optimization for scheduling of cracking furnace systems 被引量:8
1
作者 Peng Jiang Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期992-999,共8页
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip... Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model. 展开更多
关键词 Cracking furnace systems Feed scheduling Multi-objective mixed integer nonlinear optimization Genetic algorithm
下载PDF
Modeling and optimization for oil well production scheduling 被引量:1
2
作者 Jin Lang Jiao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第10期1423-1430,共8页
In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil fl... In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances. 展开更多
关键词 Oil well production Scheduling mixed integer nonlinear programming(MINLP)Improved partide swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部