There are many compounds with different structures and chemical properties in Evodiae Fructus. It is hard to simultaneously determine the bioactive compounds by high performance liquid chromatography(HPLC). A new me...There are many compounds with different structures and chemical properties in Evodiae Fructus. It is hard to simultaneously determine the bioactive compounds by high performance liquid chromatography(HPLC). A new method was proposed for four bioactive compounds(synephrine, limonoids, evodiamine and rutecarpine) to be separated completely and determined accurately using ionic liquids(ILs) as mobile phase additives. The mechanism and the effect of the ILs for changing the chromatographic behaviors of the four compounds were studied by systemati- cally changing the pH value of mobile phase, the types and concentrations of ILs as well as the concentrations of phosphate buffer. The chromatographic behaviors of the analytes with a mobile phase containing ILs complied with the stoichiometric displacement model for retention(SDM-R). All results demonstrate the dual nature of ionic liquids, which are competitive adsorption and ion-pair agent. Meanwhile, excellent linearity was observed for all the com- pounds with correlation coefficients between 0.9992 and 0.9998. The limit of detection and the limit of quantification of the four compounds varied from 0.47μg/mL to 0.87 μg/mL and from 1.79 μg/mL to 2.44μg/mL, respectively. Three kinds of Evodiae Fructus processed through different methods were analyzed via the method. The result shows that the contents of evodiamine and rutecarpine as the two main active compounds by processing with vinegar and salt are obviously higher than those of the raw products.展开更多
Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomeric...Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomerically pure drugs or optically active intermediates is highly desired in many fields like medicine, food and biochemistry. Thereby, it also promoted the development of various enantiomer selective separation techniques. Among the many chiral separation methods, chiral mobile phase additives(CMPAs) are widely used in various chromatographic techniques due to their simple operation,good versatility and low price. There have been a number of reviews on the research progress of CMPAs in last 2 decades,but they only reviewed the application of CMPAs in one specific chromatographic technique. Therefore, to provide a more comprehensive illustration of CMPAs in separation technology, their applications in high-performance liquid chromatography, capillary electrophoresis, countercurrent chromatography, nano-liquid chromatography were summarized and their advantages and disadvantages were briefly introduced in this critical review. The application of molecular simulation in the study of chiral separation mechanism was briefly summarized. We expect that it will provide researchers with the latest developments in this field and potential inspirations.展开更多
The chiral separations of four pharmaceutical racemates which contain N-alkyl groups were satisfactorily resolved using SBE-β-CD as a chiral mobile phase additive (CMPA) in a RP-HPLC system (the resolution is 2.70...The chiral separations of four pharmaceutical racemates which contain N-alkyl groups were satisfactorily resolved using SBE-β-CD as a chiral mobile phase additive (CMPA) in a RP-HPLC system (the resolution is 2.701 for ondansetron hydrochloride, 1.996 for sulpiride, 1.293 for clenbuterol hydrochloride and 0.816 for omeprazole). In addition, the effects of different parameters such as CD type and CD concentration were investigated. The separation mechanism arises through the combination of several potential interactions, including electrostatic interactions as well as hydrogen bonding interactions and hydrophobic inclusion interactions, which allow for the SBE-β-CD-drug complexation with strong stereoselectivity and stability. The resolution also relates to the number and location of N atoms in the enantiomers. This method will be applicable to the isolation of various types of biologically imoortant enantiomers containing N-alkyl groups.展开更多
This paper proposes the use of novel surfactant additives for the separation of organic acids by ion-pair chromatography and studies the influences of surfactants on the chromatographic separation behaviors.Researches...This paper proposes the use of novel surfactant additives for the separation of organic acids by ion-pair chromatography and studies the influences of surfactants on the chromatographic separation behaviors.Researches have been carried out on both silica gel matrix and polymer supporters in order to compare the two ordinary kinds of stationary phases,and the phenomenon is similar. Separation is based on differences in the stabilities of analyte-additive complexes in solution.Retention times of analytes can ...展开更多
文摘There are many compounds with different structures and chemical properties in Evodiae Fructus. It is hard to simultaneously determine the bioactive compounds by high performance liquid chromatography(HPLC). A new method was proposed for four bioactive compounds(synephrine, limonoids, evodiamine and rutecarpine) to be separated completely and determined accurately using ionic liquids(ILs) as mobile phase additives. The mechanism and the effect of the ILs for changing the chromatographic behaviors of the four compounds were studied by systemati- cally changing the pH value of mobile phase, the types and concentrations of ILs as well as the concentrations of phosphate buffer. The chromatographic behaviors of the analytes with a mobile phase containing ILs complied with the stoichiometric displacement model for retention(SDM-R). All results demonstrate the dual nature of ionic liquids, which are competitive adsorption and ion-pair agent. Meanwhile, excellent linearity was observed for all the com- pounds with correlation coefficients between 0.9992 and 0.9998. The limit of detection and the limit of quantification of the four compounds varied from 0.47μg/mL to 0.87 μg/mL and from 1.79 μg/mL to 2.44μg/mL, respectively. Three kinds of Evodiae Fructus processed through different methods were analyzed via the method. The result shows that the contents of evodiamine and rutecarpine as the two main active compounds by processing with vinegar and salt are obviously higher than those of the raw products.
基金financially funded by the National Key R&D Program of China(2019YFC1905500)the National Natural Science Foundation of China(21922409,21976131)Tianjin Research Program of Application Foundation and Advanced Technology(18JCZDJC37500)
文摘Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomerically pure drugs or optically active intermediates is highly desired in many fields like medicine, food and biochemistry. Thereby, it also promoted the development of various enantiomer selective separation techniques. Among the many chiral separation methods, chiral mobile phase additives(CMPAs) are widely used in various chromatographic techniques due to their simple operation,good versatility and low price. There have been a number of reviews on the research progress of CMPAs in last 2 decades,but they only reviewed the application of CMPAs in one specific chromatographic technique. Therefore, to provide a more comprehensive illustration of CMPAs in separation technology, their applications in high-performance liquid chromatography, capillary electrophoresis, countercurrent chromatography, nano-liquid chromatography were summarized and their advantages and disadvantages were briefly introduced in this critical review. The application of molecular simulation in the study of chiral separation mechanism was briefly summarized. We expect that it will provide researchers with the latest developments in this field and potential inspirations.
基金supported by the National Science and Technology Special Projects(Nos.2012ZX 09301-002-001 and 2012 ZX09301-002-006)the Research and Application of New Efficient Analytical Technologies and Methods in Drug Quality Control and Drug Safety(No.2011IM030200)the State Key Laboratory of Bioactive Substances and Functions of Natural Medicines Open Project(No.GTZK201310)
文摘The chiral separations of four pharmaceutical racemates which contain N-alkyl groups were satisfactorily resolved using SBE-β-CD as a chiral mobile phase additive (CMPA) in a RP-HPLC system (the resolution is 2.701 for ondansetron hydrochloride, 1.996 for sulpiride, 1.293 for clenbuterol hydrochloride and 0.816 for omeprazole). In addition, the effects of different parameters such as CD type and CD concentration were investigated. The separation mechanism arises through the combination of several potential interactions, including electrostatic interactions as well as hydrogen bonding interactions and hydrophobic inclusion interactions, which allow for the SBE-β-CD-drug complexation with strong stereoselectivity and stability. The resolution also relates to the number and location of N atoms in the enantiomers. This method will be applicable to the isolation of various types of biologically imoortant enantiomers containing N-alkyl groups.
基金supported by National Natural Science Foundation of China(No.20775070)Zhejiang Qianjiang Project of Science and Technology for Competent People(No.2008R10028)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Nos.R4080124,Y4080064)Zhejiang Provincial Analysis and Testing Foundation of China(No.2007F70061)
文摘This paper proposes the use of novel surfactant additives for the separation of organic acids by ion-pair chromatography and studies the influences of surfactants on the chromatographic separation behaviors.Researches have been carried out on both silica gel matrix and polymer supporters in order to compare the two ordinary kinds of stationary phases,and the phenomenon is similar. Separation is based on differences in the stabilities of analyte-additive complexes in solution.Retention times of analytes can ...