A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) ca...A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.展开更多
A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for...A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.展开更多
文章从分析MCMA算法的原理出发,研究了其在信道均衡技术上的应用,重点阐述了通过Matlab仿真和Xilinx System Generator for DSP开发软件在FPGA上实现基于MCMA算法的盲均衡器的方法。从硬件协同仿真结果可以看出,实现的盲信道均衡器能够...文章从分析MCMA算法的原理出发,研究了其在信道均衡技术上的应用,重点阐述了通过Matlab仿真和Xilinx System Generator for DSP开发软件在FPGA上实现基于MCMA算法的盲均衡器的方法。从硬件协同仿真结果可以看出,实现的盲信道均衡器能够达到消除码间干扰的效果。展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
基金Supported by the National Natural Science Foundation of China (60372057)
文摘A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.
基金the National Natural Science Foundation of China (60072001)
文摘A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.