The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im...In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.展开更多
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW)...With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.展开更多
Complex-amplitude holographic metasurfaces(CAHMs)with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level,leading to higher ...Complex-amplitude holographic metasurfaces(CAHMs)with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level,leading to higher image-reconstruction quality compared with their natural counterparts.However,prevailing design methods of CAHMs are based on Huygens-Fresnel theory,meta-atom optimization,numerical simulation and experimental verification,which results in a consumption of computing resources.Here,we applied residual encoder-decoder convolutional neural network to directly map the electric field distributions and input images for monolithic metasurface design.A pretrained network is firstly trained by the electric field distributions calculated by diffraction theory,which is subsequently migrated as transfer learning framework to map the simulated electric field distributions and input images.The training results show that the normalized mean pixel error is about 3%on dataset.As verification,the metasurface prototypes are fabricated,simulated and measured.The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the target electric field,which demonstrates the effectiveness of our design.Encouragingly,this work provides a monolithic field-to-pattern design method for CAHMs,which paves a new route for the direct reconstruction of metasurfaces.展开更多
Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary ...Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate(VBS)with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate(AHM)and 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAT).The preparation conditions of the monolith were optimized.The morphology and formation of the poly(VBS-co-TAT-co-AHM)monolith were confirmed by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FT-IR).The separation perfor-mances of the monolith were evaluated systematically.It should be noted that the incorporation of VBS functional monomer can provideπ-πinteractions,hydrophilic interactions,and ion-exchange in-teractions.Hence,the prepared poly(VBS-co-TAT-co-AHM)monolith can achieve efficient separation of thiourea compounds,benzene series,phenol compounds,aniline compounds and sulfonamides in RPLC or HILIC separation mode.The largest theoretical plate number for N,N0-dimethylthiourea reached 1.7×10^(5)plates/m.In addition,the poly(VBS-co-TAT-co-AHM)monolithic column showed excellent reproducibility and stability.This novel monolithic column has great application value and potential in capillary electrochromatography(CEC).展开更多
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/...In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells.展开更多
Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman prese...Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.展开更多
The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating...The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating under constant bias voltage conditions was designed. A new monolithic integrating mode was proposed,in which the dielectric and passiva- tion layers in standard CMOS processes were used as sensor structure layers,gate polysilicon as the sacrificial layer,and the second polysilicon layer as the sensor heating resistor. Then, the fabricating processes were designed and the monolithic thermal vacuum sensor was fabricated with a 0. 6μm mixed signal CMOS process followed by sacrificial layer etching technology. The measurement results show that the fabricated monolithic vacuum sensor can measure the pressure range of 2- 10^5 Pa and the output voltage is adjustable.展开更多
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ...Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.展开更多
The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicat...The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.展开更多
A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the ...A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.展开更多
Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper....Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includ...2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.展开更多
A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the jun...A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.展开更多
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packagi...A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.展开更多
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government's Ministry of Science and ICT(NRF-2022M3J1A1063226,2021M3H4A1A 03057403,2017M3D1A1039377,and NRF-2021R1C1C1011882)supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20203040010320)
文摘In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61925505,92373209 and 62235017).
文摘With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.
基金supports from the National Natural Science Foundation of China under Grant Nos.61971435,62101588,62101589Natural Science Basic Research Program of Shaanxi Province(Grant No:2022JM-352,2022JQ-335,2023-JC-YB-069)the National Key Research and Development Program of China(Grant No.:SQ2017YFA0700201).
文摘Complex-amplitude holographic metasurfaces(CAHMs)with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level,leading to higher image-reconstruction quality compared with their natural counterparts.However,prevailing design methods of CAHMs are based on Huygens-Fresnel theory,meta-atom optimization,numerical simulation and experimental verification,which results in a consumption of computing resources.Here,we applied residual encoder-decoder convolutional neural network to directly map the electric field distributions and input images for monolithic metasurface design.A pretrained network is firstly trained by the electric field distributions calculated by diffraction theory,which is subsequently migrated as transfer learning framework to map the simulated electric field distributions and input images.The training results show that the normalized mean pixel error is about 3%on dataset.As verification,the metasurface prototypes are fabricated,simulated and measured.The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the target electric field,which demonstrates the effectiveness of our design.Encouragingly,this work provides a monolithic field-to-pattern design method for CAHMs,which paves a new route for the direct reconstruction of metasurfaces.
基金the National Natural Science Foundation of China(Grant Nos.:82273885,82073808 and 81872828).
文摘Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate(VBS)with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate(AHM)and 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAT).The preparation conditions of the monolith were optimized.The morphology and formation of the poly(VBS-co-TAT-co-AHM)monolith were confirmed by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FT-IR).The separation perfor-mances of the monolith were evaluated systematically.It should be noted that the incorporation of VBS functional monomer can provideπ-πinteractions,hydrophilic interactions,and ion-exchange in-teractions.Hence,the prepared poly(VBS-co-TAT-co-AHM)monolith can achieve efficient separation of thiourea compounds,benzene series,phenol compounds,aniline compounds and sulfonamides in RPLC or HILIC separation mode.The largest theoretical plate number for N,N0-dimethylthiourea reached 1.7×10^(5)plates/m.In addition,the poly(VBS-co-TAT-co-AHM)monolithic column showed excellent reproducibility and stability.This novel monolithic column has great application value and potential in capillary electrochromatography(CEC).
基金This work was supported by Zhejiang Energy Group(znkj-2018-118)Key Research and Development Program of Zhejiang Province(2021C01006)+5 种基金Key Project of Zhejiang Province(2021C04009)Science and technology projects in Liaoning Province 2021(2021JH1/10400104)Ningbo“Innovation 2025”Major Project(2020Z098)National Key R&D Program of China(2018YFB1500403)National Natural Science Foundation of China(61974178,61874177,62004199)Youth Innovation Promotion Association(2018333).
文摘In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells.
文摘Advances in metal-free materials and the popularization of Computer-Aided Design and Manufacturing (CAD/CAM) have led to the wide clinical use of all-ceramic crowns for esthetic restorations. A 72-year-old woman presented to our hospital with unesthetic restorations on the right upper and lower posterior teeth. Intraoral examination revealed poorly fitting metal crown margins. Defective prostheses were removed, and provisional restorations were provided to stabilize the mandibular position. Optical impressions and the maxillomandibular relationship were recorded using an intraoral scanner, and monolithic zirconia crowns were fabricated using CAD/CAM technology for complete veneer crown restorative treatment. Occlusal examination revealed an improvement in occlusal force distribution at initial examination (right side: 33.5%, left side: 66.5%) after placement of the zirconia crowns (right side: 54.9%, left side: 45.1%). Occlusal force and occlusal force distribution area also showed an increasing trend. The Oral Health Impact Profile short form (OHIP-14) score decreased from 7 points at initial examination to 0 points after prosthodontic treatment. Appropriate diagnosis and treatment planning contributed to the increased occlusal force and balanced occlusal force distribution. Therefore, the present case indicates the potential of monolithic zirconia crowns to achieve both esthetic and stable functional outcomes.
文摘The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating under constant bias voltage conditions was designed. A new monolithic integrating mode was proposed,in which the dielectric and passiva- tion layers in standard CMOS processes were used as sensor structure layers,gate polysilicon as the sacrificial layer,and the second polysilicon layer as the sensor heating resistor. Then, the fabricating processes were designed and the monolithic thermal vacuum sensor was fabricated with a 0. 6μm mixed signal CMOS process followed by sacrificial layer etching technology. The measurement results show that the fabricated monolithic vacuum sensor can measure the pressure range of 2- 10^5 Pa and the output voltage is adjustable.
基金the support by National Research Foundation of Singapore(NRF,Project:NRF-CRP262021RS-0002),for research conducted at the National University of Singapore(NUS)。
文摘Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
文摘The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.
文摘A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.
文摘Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2001AA312010).
文摘2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.
文摘A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.
文摘A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.