In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with som...In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.展开更多
The hydrodynamics of side-by-side barges are much more complex than those of a single barge in waves because of wave shielding, viscous effects and water resonance in the gap. In the present study, hydrodynamic coeffi...The hydrodynamics of side-by-side barges are much more complex than those of a single barge in waves because of wave shielding, viscous effects and water resonance in the gap. In the present study, hydrodynamic coefficients in the frequency domain were calculated for both the system of multiple bodies and the isolated body using both low-order and higher-order boundary-element methods with different element numbers. In these calculations, the damping-lid method was used to modify the free-surface boundary conditions in the gap and to make the hydrodynamic results more reasonable. Then far-field, mid-field and near-field methods were used to calculate wave-drift forces for both the multi-body system and the isolated body. The results show that the higher-order method has faster convergence speed than the low-order method for the multi-body case. Comparison of different methods of computing drift force showed that mid-field and far-field methods have better convergence than the near-field method. In addition, corresponding model tests were performed in the Deepwater Offshore Basin at Shanghai Jiao Tong University. Comparison between numerical and experimental results showed good agreement.展开更多
The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle veloci...The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(NlogN) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09Z240)the National Deep-Sea Technology Project of Development and Re-search(Grant No.DYXM-115-04-02-01)
文摘In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.
基金financially supported by Lloyd’s Register Foundation(LRF),a UK-registered charity and sole shareholder of Lloyd’s Register Group Ltdthe Youth Innovation Fund of State Key Laboratory of Ocean Engineering(Grant No.GKZD010059-21)
文摘The hydrodynamics of side-by-side barges are much more complex than those of a single barge in waves because of wave shielding, viscous effects and water resonance in the gap. In the present study, hydrodynamic coefficients in the frequency domain were calculated for both the system of multiple bodies and the isolated body using both low-order and higher-order boundary-element methods with different element numbers. In these calculations, the damping-lid method was used to modify the free-surface boundary conditions in the gap and to make the hydrodynamic results more reasonable. Then far-field, mid-field and near-field methods were used to calculate wave-drift forces for both the multi-body system and the isolated body. The results show that the higher-order method has faster convergence speed than the low-order method for the multi-body case. Comparison of different methods of computing drift force showed that mid-field and far-field methods have better convergence than the near-field method. In addition, corresponding model tests were performed in the Deepwater Offshore Basin at Shanghai Jiao Tong University. Comparison between numerical and experimental results showed good agreement.
基金the National Natural Science Foundation of China (10332050 and 10572144)Knowledge Innovation Program (KJCX-SW-L08)
文摘The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(NlogN) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.