System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic...System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic-based approach is proposed to solve the components assignment problem under budget constraint. The mathematical model of the optimization problem is presented and solved by the proposed genetic-based approach. The proposed approach is based on determining the optimal set of lower boundary points that maximize the system reliability such that the total assignment cost does not exceed the specified budget. Finally, to evaluate our approach, we applied it to various network examples with different numbers of available components;two-source two-sink network and three-source two-sink network.展开更多
In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deployi...In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.展开更多
文摘System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic-based approach is proposed to solve the components assignment problem under budget constraint. The mathematical model of the optimization problem is presented and solved by the proposed genetic-based approach. The proposed approach is based on determining the optimal set of lower boundary points that maximize the system reliability such that the total assignment cost does not exceed the specified budget. Finally, to evaluate our approach, we applied it to various network examples with different numbers of available components;two-source two-sink network and three-source two-sink network.
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473077,61473078)+4 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)the Fundamental Research Funds for the Central Universities,China(No.15D110423)
文摘In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.