Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key ...Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples...For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.展开更多
Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic...Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.展开更多
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa...Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.展开更多
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable...We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable polymer.The proposed encapsulation method is beneficial to most of the other known encapsulation approaches being fully harmless to perovskite and transporting layers and processible at room temperature.Vacuum deposition of the capping layer promotes efficient removal of water,oxygen and organic solvent residuals from the device prior to sealing and could be easily performed using standard equipment for metal electrode deposition.The proposed strategy is transferrable to any lab-scale perovskite solar cell prototypes regardless of their geometry and architecture and results in excellent stability of the devices in ambient air and long operating conditions.Upon the 1000 hours stability test at ambient air(30%-60% RH),the cells preserved 92.9% of their initial efficiency on average under 1 Sun illumination at constant maximum power point tracking(MPPT,ISOS-L-1) and over 96% under sto rage in the dark(ISOS-D-1),thus evidencing for the high effectiveness of the proposed encapsulation approach.展开更多
Flexible perovskite solar cells(f-PSCs)offer attractive commercial prospects in the near future,enabled by new value propositions,such as mechanical flexibility,or high specific powers.The long-term reliability of the...Flexible perovskite solar cells(f-PSCs)offer attractive commercial prospects in the near future,enabled by new value propositions,such as mechanical flexibility,or high specific powers.The long-term reliability of these devices requires appropriate encapsulation to prevent degradation caused by environmental factors.Here,a lamination protocol is developed,incorporating adhesive materials,barrier foils,and edge sealants,which results in a robust device hermitization.By applying the developed procedure to three different perovskite solar cell configurations(p-i-n with carbon,p-i-n with silver,and n-i with carbon),fabricated with large active areas(1 cm^(2)),the universality of this approach is demonstrated.The best devices preserved over 85%of the initial performance after a sequence of accelerated aging tests based on industry standards(compliant with the IEC 61215 and IEC 61646)comprised of 1400 h of damp heat,50 thermal cycles,and 10 cycles of the humidity-freeze test.展开更多
Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabiliza...Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties.展开更多
In this study,lipases of CALB(Candida antarctica lipase B),TLL(Thermomyces lanuginosa lipase),RML(Rhizomucor miehei lipase),CALA(Candida antarctica lipase A)and LU(Lecitase?Ultra)were encapsulated into the nucleotideh...In this study,lipases of CALB(Candida antarctica lipase B),TLL(Thermomyces lanuginosa lipase),RML(Rhizomucor miehei lipase),CALA(Candida antarctica lipase A)and LU(Lecitase?Ultra)were encapsulated into the nucleotidehybrid metal coordination polymers(CPs)for diacylglyerols(DAG)preparation.Guanosine 5'-monophosphate(GMP)and adenosine 5'-monophosphate(AMP)were used as coordinating molecules,and metal ions of Fe^(3+),Ba^(2+),Mn^(2+),Ni^(2+)and Cr^(3+)were applied to prepare matrix.Results indicated that,besides Ba^(2+)with AMP,all other metal ions can coordinate with AMP and GMP to generate CPs.In addition,the AMP/Ni was amorphous when standing temperature was 4℃,while it was crystalline when standing temperature was from 30 to 180℃.DAG content from 47.55%to 64.99%was obtained from glycerolysis by CALB@GMP/Ba,RML@GMP/Ba,TLL@GMP/Ba,RML@GMP/Mn and TLL@GMP/Mn.Additionally,CALB@GMP/Fe showed selectivity towards DAG formation in the esterification and DAG content up to 61.88%was obtained.展开更多
Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce...Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.展开更多
BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focu...BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.展开更多
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a...BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.展开更多
Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameter...Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameters such as the emulsifier and PLGA concentrations, the pH and concentration of the insulin solution, the solvent evaporation method and PVA in the internal phase were investigated for the encapsulation efficiency. The results indicated that higher emulsifier concentration, relatively less amount of PLGA and lower insulin concentration would increase the entrapment of insulin. Furthermore, pH of insulin solution approaching to pI (5.3), adding some PVA to the internal phase and a shorter evaporation time helped to enhance the incorporation efficiency of insulin. Optimized preparation parameters led to nanoparticles with well-defined characteristics such as an average size around 149.6 nm, a polydispersity lower than 0.1 and high encapsulation efficiency up to 42.8%.展开更多
Congenital peritoneal encapsulation(CPE) is a very rare, congenital condition characterised by the presence of an accessory peritoneal membrane which encases a variable extent of the small bowel. It is unclear how CPE...Congenital peritoneal encapsulation(CPE) is a very rare, congenital condition characterised by the presence of an accessory peritoneal membrane which encases a variable extent of the small bowel. It is unclear how CPE develops,however it is currently understood to be a result of an aberrant adhesion in the peritoneal lining of the physiological hernia in foetal mid-gut development. The condition was first described in 1868, and subsequently there have been only 45 case reports of the phenomenon. No formal, systematised review of CPE has yet been performed, meaning the condition remains poorly understood,underdiagnosed and mismanaged. Diagnosis of CPE remains clinical with important adjuncts provided by imaging and diagnostic laparoscopy. Two thirds of patients present with abdominal pain, likely secondary to sub-acute bowel obstruction. A fixed, asymmetrical distension of the abdomen and differential consistency on abdominal palpation are more specific clinical features present in approximately 10% of cases. CPE is virtually undetectable on plain imaging, and is only detected on 40% of patients with computed tomography scan. Most patients will undergo diagnostic laparotomy to confirm the diagnosis.Management of CPE includes both medical management of the critically-unstable patient and surgical laparotomy, partial peritonectomy and adhesiolysis.Prognosis following prompt surgical treatment is excellent, with a majority of patients being symptom free at follow up. This review summarises the current literature on the aetiology, diagnosis and treatment of this rare disease. We also introduce a novel classification system for encapsulating bowel diseases, which may distinguish CPE from the commoner, more morbid conditions of abdominal cocoon and encapsulating peritoneal sclerosis.展开更多
To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsula...To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.展开更多
Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was fou...Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low.Delivery systems made of food-grade materials have been reported to improve the shelf-life,bioavailability and bioefficacy of TPPs.This review discusses the chemistry of TPPs;the setbacks of TPPs for application;and the strategies to counteract application limitations by rationally designing delivery systems.An overview of different formulations used to encapsulate TPPs is provided in this study,such as emulsion-based systems(liposome,nanoemulsion,double emulsion,and Pickering emulsion)and nano/microparticles-based systems(protein-based,carbohydrate-based,and bi-polymer based).In addition,the stability,bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models.The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs,which can be of great value to TPPs-fortified food products.Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.展开更多
Lithium–sulfur(Li–S)batteries have become one of the most promising candidates for next-generation batteries owing to their high specific capacity,low cost,and environment-friendliness.Many efforts have been made to...Lithium–sulfur(Li–S)batteries have become one of the most promising candidates for next-generation batteries owing to their high specific capacity,low cost,and environment-friendliness.Many efforts have been made to mitigate the"shuttle effect"through physical adsorption and chemical bonding.MoS2 has been proposed as a cathode material to provide effective anchoring sites for lithium polysulfides(Li PSs),but is still limited by its layer structure.Herein,we designed novel MoS2 nanorods with inner caves based on our previous work,and performed synchronous encapsulation of sulfur during the synthesis process.The outer MoS2 tubular shells physically inhibit the outward diffusion of polysulfide species while the inner particles chemically anchor the polysulfides to prevent shuttling.As the cathode matrix in Li–S batteries,the electrochemical results deliver a high initial discharge capacity of 1213 mAhg^-1 for sulfur at 0.1 C.After cycling at 1 C for 300 cycles,the cells exhibit a capacity decay of only 0.076%per cycle and high average coulombic efficiency over 95%.The tubular MoS2 structure is an innovative and appealing design,which could be regarded as a prospective substrate for the improved performance of Li–S batteries.展开更多
Mesoporous molecular sieve with Al-promoted sulfated rirconia (SZA) based strong solid acid nano-particles within its mesoporous channels was synthesized by using a one-step incipient wetness impregnation method with ...Mesoporous molecular sieve with Al-promoted sulfated rirconia (SZA) based strong solid acid nano-particles within its mesoporous channels was synthesized by using a one-step incipient wetness impregnation method with zirconium sulfate and aluminum sulfate as the precursors. The assemblies of SZA/MCM-41 were obtained by thermal decomposition of the precursors in air.The resultant composite was characterized with various techniques such as nitrogen physisorption, X-ray diffraction, SEM and TEM. It was shown that the well-ordered channels of MCM-41 arranged in hexagonal arrays as well as the hollow tubular morphology was retained. The strong solid acid nanoparticles were isolated born each other and highly, dispersed in the channels. Nitrogen sorption showed the expected decrease in pore volume. The catalytic activity of SZA/MCM-41 composite in the isomerization of n-butane was dramatically improved in comparison to bulk SZA or SZA/silica.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR101)
文摘Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200C and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.
基金the funding support from the Ministry of Education,Government of India,under the Prime Minister Research Fellowship programme(Grant Nos.SB21221901CEPMRF008347 and SB22230217CEPMRF008347).
文摘Geomaterials with inferior hydraulic and strength characteristics often need improvement to enhance their engineering behaviors.Traditional ground improvement techniques require enormous mechanical effort or synthetic chemicals.Sustainable stabilization technique such as microbially induced calcite precipitation(MICP)utilizes bacterial metabolic processes to precipitate cementitious calcium carbonate.The reactive transport of biochemical species in the soil mass initiates the precipitation of biocement during the MICP process.The precipitated biocement alters the hydro-mechanical performance of the soil mass.Usually,the flow,deformation,and transport phenomena regulate the biocementation technique via coupled bio-chemo-hydro-mechanical(BCHM)processes.Among all,one crucial phenomenon controlling the precipitation mechanism is the encapsulation of biomass by calcium carbonate.Biomass encapsulation can potentially reduce the biochemical reaction rate and decelerate biocementation.Laboratory examination of the encapsulation process demands a thorough analysis of associated coupled effects.Despite this,a numerical model can assist in capturing the coupled processes influencing encapsulation during the MICP treatment.However,most numerical models did not consider biochemical reaction rate kinetics accounting for the influence of bacterial encapsulation.Given this,the current study developed a coupled BCHM model to evaluate the effect of encapsulation on the precipitated calcite content using a micro-scale semiempirical relationship.Firstly,the developed BCHM model was verified and validated using numerical and experimental observations of soil column tests.Later,the encapsulation phenomenon was investigated in the soil columns of variable maximum calcite crystal sizes.The results depict altered reaction rates due to the encapsulation phenomenon and an observable change in the precipitated calcite content for each maximum crystal size.Furthermore,the permeability and deformation of the soil mass were affected by the simultaneous precipitation of calcium carbonate.Overall,the present study comprehended the influence of the encapsulation of bacteria on cement morphology-induced permeability,biocement-induced stresses and displacements.
基金supported by the National Key Research and Development Program(2019YFC1606704)the Key Research and Development Program of Shaanxi Province(2022NY-013)+1 种基金National Natural Science Foundation of China(31801653)the Natural Science Foundation of Shaanxi Province(2019JQ-722).
文摘Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
基金financially supported by the Russian Science Foundation(19-73-30022)the support from the program of the Interdisciplinary Scientific and Educational School of M.V.Lomonosov Moscow State University “The future of the planet and global environmental change”MSU Program of Development。
文摘We introduce a simple and universal scalable encapsulation strategy for perovskite solar cells based on thermal vacuum evaporation of MgF2or MoO3-xcapping layer followed by sealing the device with glass and UV-curable polymer.The proposed encapsulation method is beneficial to most of the other known encapsulation approaches being fully harmless to perovskite and transporting layers and processible at room temperature.Vacuum deposition of the capping layer promotes efficient removal of water,oxygen and organic solvent residuals from the device prior to sealing and could be easily performed using standard equipment for metal electrode deposition.The proposed strategy is transferrable to any lab-scale perovskite solar cell prototypes regardless of their geometry and architecture and results in excellent stability of the devices in ambient air and long operating conditions.Upon the 1000 hours stability test at ambient air(30%-60% RH),the cells preserved 92.9% of their initial efficiency on average under 1 Sun illumination at constant maximum power point tracking(MPPT,ISOS-L-1) and over 96% under sto rage in the dark(ISOS-D-1),thus evidencing for the high effectiveness of the proposed encapsulation approach.
基金part-funded by the European Union’s Horizon 2020 research and innovation program under the grant agreement no.764047(Espresso project)the Foundation of Polish Science(First TEAM/2017-3/30).
文摘Flexible perovskite solar cells(f-PSCs)offer attractive commercial prospects in the near future,enabled by new value propositions,such as mechanical flexibility,or high specific powers.The long-term reliability of these devices requires appropriate encapsulation to prevent degradation caused by environmental factors.Here,a lamination protocol is developed,incorporating adhesive materials,barrier foils,and edge sealants,which results in a robust device hermitization.By applying the developed procedure to three different perovskite solar cell configurations(p-i-n with carbon,p-i-n with silver,and n-i with carbon),fabricated with large active areas(1 cm^(2)),the universality of this approach is demonstrated.The best devices preserved over 85%of the initial performance after a sequence of accelerated aging tests based on industry standards(compliant with the IEC 61215 and IEC 61646)comprised of 1400 h of damp heat,50 thermal cycles,and 10 cycles of the humidity-freeze test.
基金funded by the USDA National Institute of Food and Agriculture,Agriculture and Food Research Initiative Program,Competitive Grants Program award from the Improving Food Quality(A1361)program FY 2018 as grant#2018-67017-27558。
文摘Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties.
基金the National Natural Science Foundation of China(31772000)。
文摘In this study,lipases of CALB(Candida antarctica lipase B),TLL(Thermomyces lanuginosa lipase),RML(Rhizomucor miehei lipase),CALA(Candida antarctica lipase A)and LU(Lecitase?Ultra)were encapsulated into the nucleotidehybrid metal coordination polymers(CPs)for diacylglyerols(DAG)preparation.Guanosine 5'-monophosphate(GMP)and adenosine 5'-monophosphate(AMP)were used as coordinating molecules,and metal ions of Fe^(3+),Ba^(2+),Mn^(2+),Ni^(2+)and Cr^(3+)were applied to prepare matrix.Results indicated that,besides Ba^(2+)with AMP,all other metal ions can coordinate with AMP and GMP to generate CPs.In addition,the AMP/Ni was amorphous when standing temperature was 4℃,while it was crystalline when standing temperature was from 30 to 180℃.DAG content from 47.55%to 64.99%was obtained from glycerolysis by CALB@GMP/Ba,RML@GMP/Ba,TLL@GMP/Ba,RML@GMP/Mn and TLL@GMP/Mn.Additionally,CALB@GMP/Fe showed selectivity towards DAG formation in the esterification and DAG content up to 61.88%was obtained.
基金supported by the European Regional Development Fund Postdoctoral Research Support“Structures and Technology Development of Smart Insulation Materials for Indoor Microclimate Regulation”1.1.1.2/VIAA/1/16/152the European Social Fund within the Project“Development of the Academic Personnel of Riga Technical University in the Strategic Fields of Specialization”Nr.8.2.2.0/18/A/017.
文摘Nowadays buildings contain innovative materials,materials from local resources,production surpluses and rapidly renewable natural resources.Phase Change Materials(PCM)are one such group of novel materials which reduce building energy consumption.With the wider availability of microencapsulated PCM,there is an opportunity to develop a new type of insulating materials,combinate PCM with traditional insulation materials for latent heat energy storage.These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance.In this research work prototypes of low-density insulating boards for indoor spaces from hemp shives using carbamide resin binder and cold pressing were studied.Bench-scale cone calorimeter tests were conducted to evaluate fire risk,with a focus on assessing material flammability properties and the influence of PCM on the results.In this research,the amount of smoke,heat release rate,effective heat of combustion,specific extinction coefficient,mass loss,carbon dioxide yield,specific loss factor,ignition time of hemp straws samples and samples of hemp straws with 10%and without PCM admixture were compared.There is a risk of flammability for PCM and their fire reaction has not been evaluated when incorporating PCM into interior wall finishing boards.The obtained results can be used by designers to balance the potential energy savings of using PCM with a more complete understanding and predictability of the associated fire risk when using the proposed boards.It also allows for appropriate risk mitigation strategies.
基金Supported by the Project of Shanghai Municipal Commission of Health,No.2022LJ024.
文摘BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.
基金The study was reviewed and approved by the Second Hospital of Shandong University Institutional Review Board,IRB No.KYLL-2023LW044.
文摘BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.
文摘Insulin-loaded poly(lactide-co-glycolide) nanoparticles (INS-PLGA-NPs) were prepared by a double emulsion method (w/o/w), using ethyl acetate as organic solvent and poloxamer188 as emulsifier. Experimental parameters such as the emulsifier and PLGA concentrations, the pH and concentration of the insulin solution, the solvent evaporation method and PVA in the internal phase were investigated for the encapsulation efficiency. The results indicated that higher emulsifier concentration, relatively less amount of PLGA and lower insulin concentration would increase the entrapment of insulin. Furthermore, pH of insulin solution approaching to pI (5.3), adding some PVA to the internal phase and a shorter evaporation time helped to enhance the incorporation efficiency of insulin. Optimized preparation parameters led to nanoparticles with well-defined characteristics such as an average size around 149.6 nm, a polydispersity lower than 0.1 and high encapsulation efficiency up to 42.8%.
文摘Congenital peritoneal encapsulation(CPE) is a very rare, congenital condition characterised by the presence of an accessory peritoneal membrane which encases a variable extent of the small bowel. It is unclear how CPE develops,however it is currently understood to be a result of an aberrant adhesion in the peritoneal lining of the physiological hernia in foetal mid-gut development. The condition was first described in 1868, and subsequently there have been only 45 case reports of the phenomenon. No formal, systematised review of CPE has yet been performed, meaning the condition remains poorly understood,underdiagnosed and mismanaged. Diagnosis of CPE remains clinical with important adjuncts provided by imaging and diagnostic laparoscopy. Two thirds of patients present with abdominal pain, likely secondary to sub-acute bowel obstruction. A fixed, asymmetrical distension of the abdomen and differential consistency on abdominal palpation are more specific clinical features present in approximately 10% of cases. CPE is virtually undetectable on plain imaging, and is only detected on 40% of patients with computed tomography scan. Most patients will undergo diagnostic laparotomy to confirm the diagnosis.Management of CPE includes both medical management of the critically-unstable patient and surgical laparotomy, partial peritonectomy and adhesiolysis.Prognosis following prompt surgical treatment is excellent, with a majority of patients being symptom free at follow up. This review summarises the current literature on the aetiology, diagnosis and treatment of this rare disease. We also introduce a novel classification system for encapsulating bowel diseases, which may distinguish CPE from the commoner, more morbid conditions of abdominal cocoon and encapsulating peritoneal sclerosis.
基金the startup research foundation of China Three Gorge University (No.0620070124)
文摘To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.
文摘Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low.Delivery systems made of food-grade materials have been reported to improve the shelf-life,bioavailability and bioefficacy of TPPs.This review discusses the chemistry of TPPs;the setbacks of TPPs for application;and the strategies to counteract application limitations by rationally designing delivery systems.An overview of different formulations used to encapsulate TPPs is provided in this study,such as emulsion-based systems(liposome,nanoemulsion,double emulsion,and Pickering emulsion)and nano/microparticles-based systems(protein-based,carbohydrate-based,and bi-polymer based).In addition,the stability,bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models.The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs,which can be of great value to TPPs-fortified food products.Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.
基金supported by the National Natural Science Foundation of China(No.21771143)Natural Science Foundation of Shaanxi Province(grant no.2017ZDJC-30,2018JQ2027)+4 种基金Key Research Project of Shaanxi Province(2018ZDCXLGY-08-06)Natural Science Foundation of Jiangsu Province(grant no.BK20170413)Fundamental Research Funds for the Central Universities(grant no.xjj2017084)Foshan Science and Technology Bureau Project(No.2017AG100443)supported by the Cyrus Tang Foundation through the Tang Scholar Program。
文摘Lithium–sulfur(Li–S)batteries have become one of the most promising candidates for next-generation batteries owing to their high specific capacity,low cost,and environment-friendliness.Many efforts have been made to mitigate the"shuttle effect"through physical adsorption and chemical bonding.MoS2 has been proposed as a cathode material to provide effective anchoring sites for lithium polysulfides(Li PSs),but is still limited by its layer structure.Herein,we designed novel MoS2 nanorods with inner caves based on our previous work,and performed synchronous encapsulation of sulfur during the synthesis process.The outer MoS2 tubular shells physically inhibit the outward diffusion of polysulfide species while the inner particles chemically anchor the polysulfides to prevent shuttling.As the cathode matrix in Li–S batteries,the electrochemical results deliver a high initial discharge capacity of 1213 mAhg^-1 for sulfur at 0.1 C.After cycling at 1 C for 300 cycles,the cells exhibit a capacity decay of only 0.076%per cycle and high average coulombic efficiency over 95%.The tubular MoS2 structure is an innovative and appealing design,which could be regarded as a prospective substrate for the improved performance of Li–S batteries.
文摘Mesoporous molecular sieve with Al-promoted sulfated rirconia (SZA) based strong solid acid nano-particles within its mesoporous channels was synthesized by using a one-step incipient wetness impregnation method with zirconium sulfate and aluminum sulfate as the precursors. The assemblies of SZA/MCM-41 were obtained by thermal decomposition of the precursors in air.The resultant composite was characterized with various techniques such as nitrogen physisorption, X-ray diffraction, SEM and TEM. It was shown that the well-ordered channels of MCM-41 arranged in hexagonal arrays as well as the hollow tubular morphology was retained. The strong solid acid nanoparticles were isolated born each other and highly, dispersed in the channels. Nitrogen sorption showed the expected decrease in pore volume. The catalytic activity of SZA/MCM-41 composite in the isomerization of n-butane was dramatically improved in comparison to bulk SZA or SZA/silica.