To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm...Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.展开更多
This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in t...This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.展开更多
A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for...A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.展开更多
A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characterist...A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.展开更多
Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode che...Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.展开更多
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
The Wenchuan Earthquake of May 12,2008 triggered large numbers of geo-hazards.The heavy rain on 13 August 2010 triggered debris flows with total volume of more than 6 million cubic meters and the debris flows destroye...The Wenchuan Earthquake of May 12,2008 triggered large numbers of geo-hazards.The heavy rain on 13 August 2010 triggered debris flows with total volume of more than 6 million cubic meters and the debris flows destroyed 500 houses and infrastructure built after the Wenchuan Earthquake.The study area Qingping Town was located in the northwestern part of the Sichuan Basin of China,which needs the second reconstructions and the critical evaluation of debris flow.This study takes basin as the study unit and defines collapse,landslide and debris flow hazard as a geo-hazard system.A multimode system composed of principal series system and secondary parallel system were established to evaluate the hazard grade of debris flow in 138 drainage basins of Qingping Town.The evaluation result shows that 30.43% of study basins(42 basins) and 24.58% of study area,are in extremely high or high hazard grades,and both percentage of basin quantity and percentage of area in different hazard grades decrease with the increase of hazard grade.According to the geo-hazard data from the interpretation of unmanned plane image with a 0.5-m resolution and field investigation after the Wenchuan Earthquake and 8.13 Big Debris Flow,the ratio of landslides and collapses increased after the Wenchuan Earthquake and the ratios of extremely high or high hazard grades were more than moderate or low hazard grades obviously.23 geo-hazards after8.13 Big Debris Flow in Qingping town region all occurred in basins with extremely high or high hazard grades,and 9 debris flows were in basins with extremely high hazard grade.The model of multimode system for critical evaluation could forecast not only the collapse and landslide but also the debris flow precisely when the basin was taken as the study unit.展开更多
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analyse...Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.展开更多
Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively...Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.展开更多
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM...Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process.展开更多
We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top a...We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.展开更多
Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the d...Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.展开更多
This study presents two multimode stepped-impedance structures to design single-and dual-band filters. Transmission zeroes are introduced for the single-band filter by using dual-mode stepped-impedance resonators. The...This study presents two multimode stepped-impedance structures to design single-and dual-band filters. Transmission zeroes are introduced for the single-band filter by using dual-mode stepped-impedance resonators. The single-band filter with high selectivity is centered at 6.02 GHz and has a fractional bandwidth (FBW) of 25.6%. Four stubs (two low frequency and two high frequency ones) are connected to the rectangular patch in the center to construct a quadruple-mode resonator. The independent conditions of the center frequencies of the high and low bands of the resonator are analyzed. A dual-band filter, which operates at 1.53 GHz and 2.44 GHz with FWBs of 12.1% and 14.1%, respectively is designed. The single-and dual-band filters are both fabricated with double-sided YBCO films and they can be used in mobile and satellite communications.展开更多
Due to higher demands on product diversity,flexible shift between productions of different products in one equipment becomes a popular solution,resulting in existence of multiple operation modes in a single process.In...Due to higher demands on product diversity,flexible shift between productions of different products in one equipment becomes a popular solution,resulting in existence of multiple operation modes in a single process.In order to handle such multi-mode process,a novel double-layer structure is proposed and the original data are decomposed into common and specific characteristics according to the relationship between variables among each mode.In addition,both low and high order information are considered in each layer.The common and specific information within each mode can be captured and separated into several subspaces according to the different order information.The performance of the proposed method is further validated through a numerical example and the Tennessee Eastman(TE)benchmark.Compared with previous methods,superiority of the proposed method is validated by the better monitoring results.展开更多
We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lowe...We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lower propagation loss,compared with the single mode fiber(SMF)and other sensing fibers.The FBS effect and acousto-optic interaction in TA-OM4 are the first time to be demonstrated and characterized at 1550 nm theoretically and experimentally.A 2.0 km long TA-OM4 is put into an oven to measure its temperature sensitivity,which can reach up to 80.3 kHz/℃,exceeding 53%of SMF(52.4 kHz/℃).The simulated and experimental results verify that the TA-OM4 may be a good candidate as the sensing fiber for the FBS-based temperature sensor.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
基金supported by National Natural Science Foundation of China(62135007 and 61925502).
文摘Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFB2008800)the Nanchang Institute for Microtechnology of Tianjin University。
文摘This paper is focused on electrode design for piezoelectric tuning fork resonators.The relationship between the performance and electrode pattern of aluminum nitride piezoelectric tuning fork resonators vibrating in the in-plane flexural mode is investigated based on a set of resonators with different electrode lengths,widths,and ratios.Experimental and simulation results show that the electrode design impacts greatly the multimode effect induced from torsional modes but has little influence on other loss mechanisms.Optimizing the electrode design suppresses the torsional mode successfully,thereby increasing the ratio of impedance at parallel and series resonant frequencies(R_(p)/R_(s))by more than 80%and achieving a quality factor(Q)of 7753,an effective electromechanical coupling coefficient(kt_(eff)^(2))of 0.066%,and an impedance at series resonant frequency(R_(m))of 23.6 kΩ.The proposed approach shows great potential for high-performance piezoelectric resonators,which are likely to be fundamental building blocks for sensors with high sensitivity and low noise and power consumption.
文摘A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.
文摘A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.
基金Supported by the National Natural Science Foundation of China(61273160,61403418)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(10CX04046A)the Doctoral Fund of Shandong Province(BS2012ZZ011)
文摘Traditional data driven fault detection methods assume unimodal distribution of process data so that they often perform not well in chemical process with multiple operating modes. In order to monitor the multimode chemical process effectively, this paper presents a novel fault detection method based on local neighborhood similarity analysis(LNSA). In the proposed method, prior process knowledge is not required and only the multimode normal operation data are used to construct a reference dataset. For online monitoring of process state, LNSA applies moving window technique to obtain a current snapshot data window. Then neighborhood searching technique is used to acquire the corresponding local neighborhood data window from the reference dataset. Similarity analysis between snapshot and neighborhood data windows is performed, which includes the calculation of principal component analysis(PCA) similarity factor and distance similarity factor. The PCA similarity factor is to capture the change of data direction while the distance similarity factor is used for monitoring the shift of data center position. Based on these similarity factors, two monitoring statistics are built for multimode process fault detection. Finally a simulated continuous stirred tank system is used to demonstrate the effectiveness of the proposed method. The simulation results show that LNSA can detect multimode process changes effectively and performs better than traditional fault detection methods.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
基金supported by State Key Fundamental Research Program of China(Grant No.50639070)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KKCX1-YW-03)
文摘The Wenchuan Earthquake of May 12,2008 triggered large numbers of geo-hazards.The heavy rain on 13 August 2010 triggered debris flows with total volume of more than 6 million cubic meters and the debris flows destroyed 500 houses and infrastructure built after the Wenchuan Earthquake.The study area Qingping Town was located in the northwestern part of the Sichuan Basin of China,which needs the second reconstructions and the critical evaluation of debris flow.This study takes basin as the study unit and defines collapse,landslide and debris flow hazard as a geo-hazard system.A multimode system composed of principal series system and secondary parallel system were established to evaluate the hazard grade of debris flow in 138 drainage basins of Qingping Town.The evaluation result shows that 30.43% of study basins(42 basins) and 24.58% of study area,are in extremely high or high hazard grades,and both percentage of basin quantity and percentage of area in different hazard grades decrease with the increase of hazard grade.According to the geo-hazard data from the interpretation of unmanned plane image with a 0.5-m resolution and field investigation after the Wenchuan Earthquake and 8.13 Big Debris Flow,the ratio of landslides and collapses increased after the Wenchuan Earthquake and the ratios of extremely high or high hazard grades were more than moderate or low hazard grades obviously.23 geo-hazards after8.13 Big Debris Flow in Qingping town region all occurred in basins with extremely high or high hazard grades,and 9 debris flows were in basins with extremely high hazard grade.The model of multimode system for critical evaluation could forecast not only the collapse and landslide but also the debris flow precisely when the basin was taken as the study unit.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
文摘Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.
基金Supported by the National Natural Science Foundation of China(61374140,61403072)
文摘Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.
基金National Natural Science Foundation of China ( No. 61074079) Shanghai Leading Academic Discipline Project,China ( No.B504)
文摘Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process.
基金Project supported by the Open Research Program of the State Key Laboratory of Millimeter Waves,China(Grant No.K201926)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Chinathe Nanjing University of Posts and Telecommunications Scientific Foundation,China(Grant No.NY215137)
文摘We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.
基金Project supported by the National Natural Science Foundation of China (Grant No 60477018) and the Major Program of the National Natural Science Foundation of China (Grant No 60436020).
文摘Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated. By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method, the design ideas and the implementing methods of the 2^(2×2) bits type spatial logic steering are discussed; therefore the structure of logical pattern is proposed. Numerical simulation is carried out to verify the design in detail by using the beam propagation method. It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371009)the Fund from the Chinese Ministry of Science and Technology(Grant No.2014AA032703)
文摘This study presents two multimode stepped-impedance structures to design single-and dual-band filters. Transmission zeroes are introduced for the single-band filter by using dual-mode stepped-impedance resonators. The single-band filter with high selectivity is centered at 6.02 GHz and has a fractional bandwidth (FBW) of 25.6%. Four stubs (two low frequency and two high frequency ones) are connected to the rectangular patch in the center to construct a quadruple-mode resonator. The independent conditions of the center frequencies of the high and low bands of the resonator are analyzed. A dual-band filter, which operates at 1.53 GHz and 2.44 GHz with FWBs of 12.1% and 14.1%, respectively is designed. The single-and dual-band filters are both fabricated with double-sided YBCO films and they can be used in mobile and satellite communications.
基金the National Natural Science Foundation of China(61903352)China Postdoctoral Science Foundation(2020M671721)+4 种基金Zhejiang Province Natural Science Foundation of China(LQ19F030007)Natural Science Foundation of Jiangsu Province(BK20180594)Project of department of education of Zhejiang province(Y202044960)Project of Zhejiang Tongji Vocational College of Science and Technology(TRC1904)Foundation of Key Laboratory of Advanced Process Control for Light Industry(Jiangnan University),Ministry of Education,P.R.China,APCLI1803.
文摘Due to higher demands on product diversity,flexible shift between productions of different products in one equipment becomes a popular solution,resulting in existence of multiple operation modes in a single process.In order to handle such multi-mode process,a novel double-layer structure is proposed and the original data are decomposed into common and specific characteristics according to the relationship between variables among each mode.In addition,both low and high order information are considered in each layer.The common and specific information within each mode can be captured and separated into several subspaces according to the different order information.The performance of the proposed method is further validated through a numerical example and the Tennessee Eastman(TE)benchmark.Compared with previous methods,superiority of the proposed method is validated by the better monitoring results.
基金supported in part by the National Natural Foundation of China(Nos. 61875086, 61377086)the Aerospace Science Foundation of China (No.2016ZD52042)Nanjing University of Aeronautics and Astronautics Ph. D. short-term visiting scholar project (No.190901DF08)
文摘We propose the trench-assisted multimode fiber(TA-OM4)as a novel sensing fiber in forward Brillouin scattering(FBS)-based temperature sensor,due to its higher temperature sensitivity,better bending resistance and lower propagation loss,compared with the single mode fiber(SMF)and other sensing fibers.The FBS effect and acousto-optic interaction in TA-OM4 are the first time to be demonstrated and characterized at 1550 nm theoretically and experimentally.A 2.0 km long TA-OM4 is put into an oven to measure its temperature sensitivity,which can reach up to 80.3 kHz/℃,exceeding 53%of SMF(52.4 kHz/℃).The simulated and experimental results verify that the TA-OM4 may be a good candidate as the sensing fiber for the FBS-based temperature sensor.