In sensor networks,the adversaries can inject false data reports from compromised nodes.Previous approaches to filter false reports,e.g.,SEF,only verify the correctness of the message authentication code (MACs) carrie...In sensor networks,the adversaries can inject false data reports from compromised nodes.Previous approaches to filter false reports,e.g.,SEF,only verify the correctness of the message authentication code (MACs) carried in each data report on intermediate nodes,thus cannot filter out fake reports that are forged in a collaborative manner by a group of compromised nodes,even if these compromised nodes distribute in different geographical areas.Furthermore,if the adversary obtains keys from enough (e.g.,more than t in SEF) distinct key partitions,it then can successfully forge a data report without being detected en-route.A neighbor information based false report filtering scheme (NFFS) in wireless sensor networks was presented.In NFFS,each node distributes its neighbor information to some other nodes after deployment.When a report is generated for an observed event,it must carry the IDs and the MACs from t detecting nodes.Each forwarding node checks not only the correctness of the MACs carried in the report,but also the legitimacy of the relative position of these detecting nodes.Analysis and simulation results demonstrate that NFFS can resist collaborative false data injection attacks efficiently,and thus can tolerate much more compromised nodes than existing schemes.展开更多
Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor do...Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.展开更多
Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be tr...Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be traced by diagnosing brain MRI scans with advanced fuzzy c-means clustering algorithm that helps to take an appropriate intervention.In this paper,firstly the sparsity is initiated in clustering method that too rician noise is also incorporated for brain MR scans of AD subject.Secondly,a novel neighbor pixel constrained fuzzy c-means clustering algorithm is designed where topoloty-based selection of parsimonious neighbor pixels is automated.The adaptability in choice of neighbor pixel class outliers more justified object edge boundary which outperforms a dynamic cluster output.The proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering(AN_DsFCM)can withhold imposed sparsity and withstands rician noise at imposed sparse environment.This novel algorithm is applied for MRI of AD subjects and normative data is acquired to analyse clustering accuracy.The data processing pipeline of theoretically plausible proposition is elaborated in detail.The experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI scans.Visual evaluation and statistical measures are studied to meet both image processing and clinical neurophysiology standards.Overall the performance of proposed AN_DsFCM is significantly better than other methods.展开更多
In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manif...In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.展开更多
基金Projects(61173169,61103203,70921001)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)supported by Program for New Century Excellent Talents in University of China
文摘In sensor networks,the adversaries can inject false data reports from compromised nodes.Previous approaches to filter false reports,e.g.,SEF,only verify the correctness of the message authentication code (MACs) carried in each data report on intermediate nodes,thus cannot filter out fake reports that are forged in a collaborative manner by a group of compromised nodes,even if these compromised nodes distribute in different geographical areas.Furthermore,if the adversary obtains keys from enough (e.g.,more than t in SEF) distinct key partitions,it then can successfully forge a data report without being detected en-route.A neighbor information based false report filtering scheme (NFFS) in wireless sensor networks was presented.In NFFS,each node distributes its neighbor information to some other nodes after deployment.When a report is generated for an observed event,it must carry the IDs and the MACs from t detecting nodes.Each forwarding node checks not only the correctness of the MACs carried in the report,but also the legitimacy of the relative position of these detecting nodes.Analysis and simulation results demonstrate that NFFS can resist collaborative false data injection attacks efficiently,and thus can tolerate much more compromised nodes than existing schemes.
基金This study was funded by the International Science and Technology Cooperation Program of the Science and Technology Department of Shaanxi Province,China(No.2021KW-16)the Science and Technology Project in Xi’an(No.2019218114GXRC017CG018-GXYD17.11),Thesis work was supported by the special fund construction project of Key Disciplines in Ordinary Colleges and Universities in Shaanxi Province,the authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
文摘Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.
基金supported in part by Ministry of Electronics and Information Technology,Government of India under Sir Visvesvaraya PhD Scheme for Electronics and IT.
文摘Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be traced by diagnosing brain MRI scans with advanced fuzzy c-means clustering algorithm that helps to take an appropriate intervention.In this paper,firstly the sparsity is initiated in clustering method that too rician noise is also incorporated for brain MR scans of AD subject.Secondly,a novel neighbor pixel constrained fuzzy c-means clustering algorithm is designed where topoloty-based selection of parsimonious neighbor pixels is automated.The adaptability in choice of neighbor pixel class outliers more justified object edge boundary which outperforms a dynamic cluster output.The proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering(AN_DsFCM)can withhold imposed sparsity and withstands rician noise at imposed sparse environment.This novel algorithm is applied for MRI of AD subjects and normative data is acquired to analyse clustering accuracy.The data processing pipeline of theoretically plausible proposition is elaborated in detail.The experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI scans.Visual evaluation and statistical measures are studied to meet both image processing and clinical neurophysiology standards.Overall the performance of proposed AN_DsFCM is significantly better than other methods.
基金supported in part by the National Natural Science Foundation of China(Nos.61373093,61402310,61672364,and 61672365)the National Key Research and Development Program of China(No.2018YFA0701701)。
文摘In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.