Sympathetic nerve and vagus nerve remodeling play an important part in cardiac function post-myocardial infarction (MI). Increasing evidence indicates that neuregulin-1 (NRG-1) improves cardiac function following ...Sympathetic nerve and vagus nerve remodeling play an important part in cardiac function post-myocardial infarction (MI). Increasing evidence indicates that neuregulin-1 (NRG-1) improves cardiac function following heart failure. Since its impact on cardiac function and neural remodeling post-MI is poorly understood, we aimed to investigate the role of NRG-1 in autonomic nervous system remodeling post-MI. Forty-five Sprague-Dawley rats were equally randomized into three groups: sham (with the left anterior descending coronary artery exposed but without ligation), MI (left anterior descending coronary artery ligation), and MI plus NRG-1 (left anterior descending coronary artery ligation followed by intraperitoneal injection of NRG-1 (10 lag/kg, once daily for 7 days)). At 4 weeks after MI, echocardi- ography was used to detect the rat cardiac function by measuring the left ventricular end-systolic inner diameter, left ventricular diastolic diameter, left ventricular end-systolic volume, left ventricular end-diastolic volume, left ventricular ejection fraction, and left ventricular fractional shortening, mRNA and protein expression levels of tyrosine hydroxylase, growth associated protein-43 (neuronal specific pro- tein), nerve growth factor, choline acetyltransferase (vagus nerve marker), and vesicular acetylcholine transporter (cardiac vagal nerve fiber marker) in ischemic myocardia were detected by real-time PCR and western blot assay to assess autonomous nervous remodeling. After MI, the rat cardiac function deteriorated significantly, and it was significantly improved after NRG-1 injection. Compared with the MI group, mRNA and protein levels of tyrosine hydroxylase and growth associated protein-43, as well as choline acetyltransferase mRNA level significantly decreased in the MI plus NRG-1 group, while mRNA and protein levels of nerve growth factor and vesicular acetylcholine transporters, as well as choline acetyltransferase protein level slightly decreased. Our results indicate that NRG- 1 can improve cardiac function and regulate sympathetic and vagus nerve remodeling post-MI, thus reaching a new balance of the autonomic nervous system to protect the heart from injury.展开更多
Motor nerves and sensory nerves conduct signals in different directions and function in different ways.In the surgical treatment of peripheral nerve injuries,the best prognosis is obtained by keeping the motor and sen...Motor nerves and sensory nerves conduct signals in different directions and function in different ways.In the surgical treatment of peripheral nerve injuries,the best prognosis is obtained by keeping the motor and sensory nerves separated and repairing the nerves using the suture method.However,the clinical consequences of connections between sensory and motor nerves currently remain unknown.In this study,we analyzed the anatomical structure of the rat femoral nerve,and observed the motor and sensory branches of the femoral nerve in the quadriceps femoris.After ligation of the nerves,the proximal end of the sensory nerve was connected with the distal end of the motor nerve,followed by observation of the changes in the newly-formed regenerated nerve fibers.Acetylcholinesterase staining was used to distinguish between the myelinated and unmyelinated motor and sensory nerves.Denervated muscle and newly formed nerves were compared in terms of morphology,electrophysiology and histochemistry.At 8 weeks after connection,no motor nerve fibers were observed on either side of the nerve conduit and the number of nerve fibers increased at the proximal end.The proportion of newly-formed motor and sensory fibers was different on both sides of the conduit.The area occupied by autonomic nerves in the proximal regenerative nerve was limited,but no distinct myelin sheath was visible in the distal nerve.These results confirm that sensory and motor nerves cannot be effectively connected.Moreover,the change of target organ at the distal end affects the type of nerves at the proximal end.展开更多
In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heav...In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heavy responsibility on both family and society because of extreme disability and dysfunction caused by peripheral nerve injury (PNI). Thus, repair of PNI has become a major public health issue in China.展开更多
基金supported by a grant from the National Key Basic Research Development Program,the“973”Program,No.2012CB518604the National Natural Science Foundation of China,No.81260052+1 种基金the Natural Science Foundation of Hubei Province,No.2014CKB497,2014BKB075,and 2015BKA339the Natural Science Foundation of Henan Province of China,No.201602262
文摘Sympathetic nerve and vagus nerve remodeling play an important part in cardiac function post-myocardial infarction (MI). Increasing evidence indicates that neuregulin-1 (NRG-1) improves cardiac function following heart failure. Since its impact on cardiac function and neural remodeling post-MI is poorly understood, we aimed to investigate the role of NRG-1 in autonomic nervous system remodeling post-MI. Forty-five Sprague-Dawley rats were equally randomized into three groups: sham (with the left anterior descending coronary artery exposed but without ligation), MI (left anterior descending coronary artery ligation), and MI plus NRG-1 (left anterior descending coronary artery ligation followed by intraperitoneal injection of NRG-1 (10 lag/kg, once daily for 7 days)). At 4 weeks after MI, echocardi- ography was used to detect the rat cardiac function by measuring the left ventricular end-systolic inner diameter, left ventricular diastolic diameter, left ventricular end-systolic volume, left ventricular end-diastolic volume, left ventricular ejection fraction, and left ventricular fractional shortening, mRNA and protein expression levels of tyrosine hydroxylase, growth associated protein-43 (neuronal specific pro- tein), nerve growth factor, choline acetyltransferase (vagus nerve marker), and vesicular acetylcholine transporter (cardiac vagal nerve fiber marker) in ischemic myocardia were detected by real-time PCR and western blot assay to assess autonomous nervous remodeling. After MI, the rat cardiac function deteriorated significantly, and it was significantly improved after NRG-1 injection. Compared with the MI group, mRNA and protein levels of tyrosine hydroxylase and growth associated protein-43, as well as choline acetyltransferase mRNA level significantly decreased in the MI plus NRG-1 group, while mRNA and protein levels of nerve growth factor and vesicular acetylcholine transporters, as well as choline acetyltransferase protein level slightly decreased. Our results indicate that NRG- 1 can improve cardiac function and regulate sympathetic and vagus nerve remodeling post-MI, thus reaching a new balance of the autonomic nervous system to protect the heart from injury.
基金supported by a grant from the Ministry of Science and Technology 973 Project Planning of China,No.2014CB542201a grant from National High-Technology Research and Development Program of China(863 Program),No.SS2015AA020501+3 种基金the National Natural Science Foundation of China,No.31571235,31571236,31271284,31171150a grant from the Ministry of Education Innovation Team of China,No.IRT1201the Educational Ministry New Century Excellent Talents Support Project of China,No.BMU20110270a grant from the Ministry of Health of the Public Welfare Industry Special Scientific Research of China,No.201302007
文摘Motor nerves and sensory nerves conduct signals in different directions and function in different ways.In the surgical treatment of peripheral nerve injuries,the best prognosis is obtained by keeping the motor and sensory nerves separated and repairing the nerves using the suture method.However,the clinical consequences of connections between sensory and motor nerves currently remain unknown.In this study,we analyzed the anatomical structure of the rat femoral nerve,and observed the motor and sensory branches of the femoral nerve in the quadriceps femoris.After ligation of the nerves,the proximal end of the sensory nerve was connected with the distal end of the motor nerve,followed by observation of the changes in the newly-formed regenerated nerve fibers.Acetylcholinesterase staining was used to distinguish between the myelinated and unmyelinated motor and sensory nerves.Denervated muscle and newly formed nerves were compared in terms of morphology,electrophysiology and histochemistry.At 8 weeks after connection,no motor nerve fibers were observed on either side of the nerve conduit and the number of nerve fibers increased at the proximal end.The proportion of newly-formed motor and sensory fibers was different on both sides of the conduit.The area occupied by autonomic nerves in the proximal regenerative nerve was limited,but no distinct myelin sheath was visible in the distal nerve.These results confirm that sensory and motor nerves cannot be effectively connected.Moreover,the change of target organ at the distal end affects the type of nerves at the proximal end.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542200Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+1 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270
文摘In China, there are approximately 20 million people suffering from peripheral nerve injury and this number is increasing at a rate of 2 million per year. These patients cannot live or work independently and are a heavy responsibility on both family and society because of extreme disability and dysfunction caused by peripheral nerve injury (PNI). Thus, repair of PNI has become a major public health issue in China.