This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtai...This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.展开更多
A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse...A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse theory a compound inverse control method is proposed. The controller has also two parts: a linear controller and a nonlinear neural network controller. The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated .based on the Lyapunov theory. Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.展开更多
This paper is concerned with a control method for an exoskeleton ankle with electromyography (EMG) signals. The EMG signals of human ankle and the exoskeleton ankle are introduced. Then a control method is proposed ...This paper is concerned with a control method for an exoskeleton ankle with electromyography (EMG) signals. The EMG signals of human ankle and the exoskeleton ankle are introduced. Then a control method is proposed to control the exoskeleton ankle using the EMG signals. The feed-forward neural network model applied here is composed of four layers and uses the back-propagation training algorithm. The output signals from neural network are processed by the wavelet transform. Finally the control orders generated from the output signals are passed to the motor controller and drive the exoskeleton to move. Through experiments, the equality of neural network prediction of ankle movement is evaluated by giving the correlation coefficient. It is shown from the experimental results that the proposed method can accurately control the movement of ankle joint.展开更多
In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning m...In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning method (DBP algorithm) of theDRNN are Present6d. Nonlinear system characteriStics can be identified by presenting a set of input / output patterns tO the DRNN andadjusting its weights with the DBP algorithm. Experimental results show that the DRNN has good performances in the identification ofnonlinear dynamic systems in comparison with BP networks.展开更多
针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧...针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。展开更多
基金supported by the National Natural Science Foundation of China(61273190)
文摘This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.
基金This work was supported by National Natural Science Foundation of China (No .60374037) Natural Science and Technology Research Project of HebeiProvince (No .E2004000055) .
文摘A compound neural network is utilized to identify the dynamic nonlinear system. This network is composed of two parts: one is a linear neural network, and the other is a recurrent neural network. Based on the inverse theory a compound inverse control method is proposed. The controller has also two parts: a linear controller and a nonlinear neural network controller. The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated .based on the Lyapunov theory. Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.
基金supported by the National High-Tech R&D Program (Grant No.2006AA04Z224)the Innovation Program of Shanghai Municipal Education Commission (Grant No.08ZZ48)the Shanghai Leading Academic Discipline Project (Grant No.Y0102)
文摘This paper is concerned with a control method for an exoskeleton ankle with electromyography (EMG) signals. The EMG signals of human ankle and the exoskeleton ankle are introduced. Then a control method is proposed to control the exoskeleton ankle using the EMG signals. The feed-forward neural network model applied here is composed of four layers and uses the back-propagation training algorithm. The output signals from neural network are processed by the wavelet transform. Finally the control orders generated from the output signals are passed to the motor controller and drive the exoskeleton to move. Through experiments, the equality of neural network prediction of ankle movement is evaluated by giving the correlation coefficient. It is shown from the experimental results that the proposed method can accurately control the movement of ankle joint.
文摘In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning method (DBP algorithm) of theDRNN are Present6d. Nonlinear system characteriStics can be identified by presenting a set of input / output patterns tO the DRNN andadjusting its weights with the DBP algorithm. Experimental results show that the DRNN has good performances in the identification ofnonlinear dynamic systems in comparison with BP networks.
文摘针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。