In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s...An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.展开更多
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power pla...Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actu...Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.展开更多
In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities...In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semiglobal uniform ultimate bound-edness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neigh-borhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control-based switching strategy is proposed to overcome the uncontrollability problem associated with x 0 (t 0 ) = 0.展开更多
A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes th...A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM), which is applied to generate fuzzy rttles automatically, and then fix on the size of the neuro-fuzzy network, by which the complexity of system design is reducesd greatly at the price of the fitting capability; 2) R.ecursive least square estimation (RLSE). It is used to update the parameters of Takagi-Sugeno model, which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network. Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.展开更多
This contribution shows the feasibility of improving the modeling of the non-linear behavior of airborne pollution in large cities. In previous works, models have been constructed using many machine learning algorithm...This contribution shows the feasibility of improving the modeling of the non-linear behavior of airborne pollution in large cities. In previous works, models have been constructed using many machine learning algorithms. However, many of them do not work for all the pollutants, or are not consistent or robust for all cities. In this paper, an improved algorithm is proposed using Ant Colony Optimization (ACO) employing models created by a neuro-fuzzy system. This method results in a reduction of prediction error, which results in a more reliable prediction models obtained.展开更多
Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing met...Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images.展开更多
This paper aims to design and implement an automatic heart disease diagnosis system using?MATLAB. The Cleveland data set for heart diseases was used as the main database for training and testing the developed system. ...This paper aims to design and implement an automatic heart disease diagnosis system using?MATLAB. The Cleveland data set for heart diseases was used as the main database for training and testing the developed system. In order to train and test the Cleveland data set, two systems were developed. The first system is based on the Multilayer Perceptron (MLP) structure on the Artificial Neural Network (ANN), whereas the second system is based on the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach. Each system has two main modules, namely, training and testing,?where 80% and 20% of the Cleveland data set were randomly selected for training and testing?purposes respectively. Each system also has an additional module known as case-based module,?where the user has to input values for 13 required attributes as specified by the Cleveland data set,?in order to test the status of the patient whether heart disease is present or absent from that particular patient. In addition, the effects of different values for important parameters were investigated in the ANN-based and Neuro-Fuzzy-based systems in order to select the best parameters that obtain the highest performance. Based on the experimental work, it is clear that the Neuro-Fuzzy system outperforms the ANN system using the training data set, where the accuracy for each system was 100% and 90.74%, respectively. However, using the testing data set, it is clear that the ANN system outperforms the Neuro-Fuzzy system, where the best accuracy for each system was 87.04% and 75.93%, respectively.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to...Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.展开更多
The neuro-fuzzy network (NFN) is used to model the rules and experience of the process planner. NFN is to select the manufacturing operations sequences for the part features. A detailed description of the NFN system d...The neuro-fuzzy network (NFN) is used to model the rules and experience of the process planner. NFN is to select the manufacturing operations sequences for the part features. A detailed description of the NFN system development is given. The rule structure utilizes sigmoid functions to fuzzify the inputs, multiplication to combine the if Part of the rules and summation to integrate the fired rules. Expert knowledge from previous process Plans is used in determinning the initial network structure and parameters of the membership functions. A back-propagation (BP) training algorithm was developed to fine tune the knowledge to company standards using the input-output data from executions of previous plans. The method is illustrated by an industrial example.展开更多
Diabetes has become a major concern nowadays and its complications are affecting various organs of a diabetic patient. Therefore, a multi-dimensional technique including all parameters is required to detect the cause,...Diabetes has become a major concern nowadays and its complications are affecting various organs of a diabetic patient. Therefore, a multi-dimensional technique including all parameters is required to detect the cause, its proper diagnostic procedure and its prevention. In this present work, a technique has been introduced that seeks to build an implementation for the intelligence system based on neural networks. Moreover, it has been described that how the proposed technique can be used to determine the membership together with the non-membership functions in the intuitionistic environment. The dataset has been obtained from Pima Indians Diabetes Database (PIDD). In this work, a complete diagnostic procedure of diabetes has been introduced with seven layered structural frameworks of an Intuitionistic Neuro Sugeno Fuzzy System (INSFS). The first layer is the input, in which six factors have been taken as an input variable. Subsequently, a neural network framework has been developed by constructing IFN for all the six input variables, and then this input has been fuzzified by using triangular intuitionistic fuzzy numbers. In this work, we have introduced a novel optimization technique for the parameters involved in the INSFS. Moreover, an inference system has also been framed for the neural network known as INFS. The results have also been given in the form of tables, which describe each concluding factor.展开更多
In this paper, adaptive neuro-fuzzy inference system ANFIS is used to assess conditions required for aquatic systems to serve as a sink for metal removal;it is used to generate information on the behavior of heavy met...In this paper, adaptive neuro-fuzzy inference system ANFIS is used to assess conditions required for aquatic systems to serve as a sink for metal removal;it is used to generate information on the behavior of heavy metals (mercury) in water in relation to its uptake by bio-species (e.g. bacteria, fungi, algae, etc.) and adsorption to sediments. The approach of this research entails training fuzzy inference system by neural networks. The process is useful when there is interrelation between variables and no enough experience about mercury behavior, furthermore it is easy and fast process. Experimental work on mercury removal in wetlands for specific environmental conditions was previously conducted in bench scale at Concordia University laboratories. Fuzzy inference system FIS is constructed comprising knowledge base (i.e. premises and conclusions), fuzzy sets, and fuzzy rules. Knowledge base and rules are adapted and trained by neural networks, and then tested. ANFIS simulates and predicts mercury speciation for biological uptake and mercury adsorption to sediments. Modeling of mercury bioavailability for bio-species and adsorption to sediments shows strong correlation of more than 98% between simulation results and experimental data. The fuzzy models obtained are used to simulate and forecast further information on mercury partitioning to species and sediments. The findings of this research give information about metal removal by aquatic systems and their efficiency.展开更多
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.
基金This work was supported by the Natural Science Foundation of Beijing (No. 4062030)National Natural Science Foundation of China (No. 50576022,69804003)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611232007).
文摘Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
基金Acknowledgement This paper is supported by National Natural Science Foundation of China (Grant No. 60973092 and No. 60873146), the National High Technology Research and Development Program of China (Grant No.2009 AA02Z307), the "211 Project" of Jilin University, the Key Laboratory for Symbol Computation and Knowledge Engineering (Ministry of Education, China), and the Key Laboratory for New Technology of Biological Recognition of Jilin Province (No. 20082209).
文摘Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.
文摘In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semiglobal uniform ultimate bound-edness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neigh-borhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control-based switching strategy is proposed to overcome the uncontrollability problem associated with x 0 (t 0 ) = 0.
文摘A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM), which is applied to generate fuzzy rttles automatically, and then fix on the size of the neuro-fuzzy network, by which the complexity of system design is reducesd greatly at the price of the fitting capability; 2) R.ecursive least square estimation (RLSE). It is used to update the parameters of Takagi-Sugeno model, which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network. Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.
文摘This contribution shows the feasibility of improving the modeling of the non-linear behavior of airborne pollution in large cities. In previous works, models have been constructed using many machine learning algorithms. However, many of them do not work for all the pollutants, or are not consistent or robust for all cities. In this paper, an improved algorithm is proposed using Ant Colony Optimization (ACO) employing models created by a neuro-fuzzy system. This method results in a reduction of prediction error, which results in a more reliable prediction models obtained.
文摘Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images.
文摘This paper aims to design and implement an automatic heart disease diagnosis system using?MATLAB. The Cleveland data set for heart diseases was used as the main database for training and testing the developed system. In order to train and test the Cleveland data set, two systems were developed. The first system is based on the Multilayer Perceptron (MLP) structure on the Artificial Neural Network (ANN), whereas the second system is based on the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach. Each system has two main modules, namely, training and testing,?where 80% and 20% of the Cleveland data set were randomly selected for training and testing?purposes respectively. Each system also has an additional module known as case-based module,?where the user has to input values for 13 required attributes as specified by the Cleveland data set,?in order to test the status of the patient whether heart disease is present or absent from that particular patient. In addition, the effects of different values for important parameters were investigated in the ANN-based and Neuro-Fuzzy-based systems in order to select the best parameters that obtain the highest performance. Based on the experimental work, it is clear that the Neuro-Fuzzy system outperforms the ANN system using the training data set, where the accuracy for each system was 100% and 90.74%, respectively. However, using the testing data set, it is clear that the ANN system outperforms the Neuro-Fuzzy system, where the best accuracy for each system was 87.04% and 75.93%, respectively.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
文摘Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.
文摘The neuro-fuzzy network (NFN) is used to model the rules and experience of the process planner. NFN is to select the manufacturing operations sequences for the part features. A detailed description of the NFN system development is given. The rule structure utilizes sigmoid functions to fuzzify the inputs, multiplication to combine the if Part of the rules and summation to integrate the fired rules. Expert knowledge from previous process Plans is used in determinning the initial network structure and parameters of the membership functions. A back-propagation (BP) training algorithm was developed to fine tune the knowledge to company standards using the input-output data from executions of previous plans. The method is illustrated by an industrial example.
文摘Diabetes has become a major concern nowadays and its complications are affecting various organs of a diabetic patient. Therefore, a multi-dimensional technique including all parameters is required to detect the cause, its proper diagnostic procedure and its prevention. In this present work, a technique has been introduced that seeks to build an implementation for the intelligence system based on neural networks. Moreover, it has been described that how the proposed technique can be used to determine the membership together with the non-membership functions in the intuitionistic environment. The dataset has been obtained from Pima Indians Diabetes Database (PIDD). In this work, a complete diagnostic procedure of diabetes has been introduced with seven layered structural frameworks of an Intuitionistic Neuro Sugeno Fuzzy System (INSFS). The first layer is the input, in which six factors have been taken as an input variable. Subsequently, a neural network framework has been developed by constructing IFN for all the six input variables, and then this input has been fuzzified by using triangular intuitionistic fuzzy numbers. In this work, we have introduced a novel optimization technique for the parameters involved in the INSFS. Moreover, an inference system has also been framed for the neural network known as INFS. The results have also been given in the form of tables, which describe each concluding factor.
文摘In this paper, adaptive neuro-fuzzy inference system ANFIS is used to assess conditions required for aquatic systems to serve as a sink for metal removal;it is used to generate information on the behavior of heavy metals (mercury) in water in relation to its uptake by bio-species (e.g. bacteria, fungi, algae, etc.) and adsorption to sediments. The approach of this research entails training fuzzy inference system by neural networks. The process is useful when there is interrelation between variables and no enough experience about mercury behavior, furthermore it is easy and fast process. Experimental work on mercury removal in wetlands for specific environmental conditions was previously conducted in bench scale at Concordia University laboratories. Fuzzy inference system FIS is constructed comprising knowledge base (i.e. premises and conclusions), fuzzy sets, and fuzzy rules. Knowledge base and rules are adapted and trained by neural networks, and then tested. ANFIS simulates and predicts mercury speciation for biological uptake and mercury adsorption to sediments. Modeling of mercury bioavailability for bio-species and adsorption to sediments shows strong correlation of more than 98% between simulation results and experimental data. The fuzzy models obtained are used to simulate and forecast further information on mercury partitioning to species and sediments. The findings of this research give information about metal removal by aquatic systems and their efficiency.