期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
1
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE NITRATE transporter nitrogen utilization efficiency
下载PDF
Function, transport, and regulation of amino acids: What is missing in rice? 被引量:3
2
作者 Nan Guo Shunan Zhang +1 位作者 MingjiGu Guohua Xu 《The Crop Journal》 SCIE CSCD 2021年第3期530-542,共13页
Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate redu... Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency. 展开更多
关键词 Amino acids Amino acid transporter Grain quality nitrogen uptake efficiency nitrogen utilization efficiency Rice architecture
下载PDF
Responses of photosynthetic characteristics and enzyme activity of nitrogen metabolism to low nitrogen in maize with different nitrogen tolerance 被引量:1
3
作者 Pengtao Ji Yongwei Cui +3 位作者 Xiangling Li Kai Xiao Peijun Tao Yuechen Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期133-143,共11页
Understanding the physiological processes associated with leaf photosynthetic characteristics and nitrogen(N)assimilation during grain-filling stage are helpful for enhancing nitrogen utilization efficiency(NUtE)of ma... Understanding the physiological processes associated with leaf photosynthetic characteristics and nitrogen(N)assimilation during grain-filling stage are helpful for enhancing nitrogen utilization efficiency(NUtE)of maize.In this study,the leaf photosynthetic and N assimilation parameters in maize,including Zhengdan 958(ZD958),a low-N tolerance cultivar and Huanong 138(HN138),a low-N sensitive cultivar under different N rates were examined.Results showed that ZD958 displayed significant increases on grain yield and NUtE than that in HN138.Analyses on the leaf photosynthetic and N assimilation-associated processes indicated that ZD958 had higher leaf N remobilization(Rem N),net photosynthetic rate(Pn)and photosynthetic N use efficiency(PNUE)with respect to those of HN138 during grain-filling stage.In addition,ZD958 was also shown to be higher activities of leaf nitrate reductase(NR),glutamine synthetase(GS),nitrate reductase(GDH)and glutamine synthetase(GAGOT)than those of HN138.The leaf PNUE was significantly positively correlated with NR,GS,GDH,GOGAT suggesting that leaf PNUE and NR,GS,GDH,GOGAT jointly determined the N remobilization efficiency and the leaf N remobilization during post-silking.These results suggested that ZD958 possessed improved PNUE,NR and GS activities in leaves during grain-filling stage that contributes improve grain weights and yield formation capacities upon under low-N conditions. 展开更多
关键词 low-N PHOTOSYNTHESIS nitrogen assimilation nitrogen utilization efficiency MAIZE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部