In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all ...In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.展开更多
In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDP...In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.展开更多
Using the graph method proposed by Schlingemann and Werner, this paper introduces a technique to construct nonbinary quantum cyclic codes and provides a specific example. We also construct the quantum codes [[8, 2, 4]...Using the graph method proposed by Schlingemann and Werner, this paper introduces a technique to construct nonbinary quantum cyclic codes and provides a specific example. We also construct the quantum codes [[8, 2, 4]]p and [[n, n - 2, 2]]p for all odd primes p by the graph method.展开更多
In this paper,we propose a new class of nonbinary polar codes,where the symbol-level polarization is achieved by using a 2×2 q-ary matrix[10β1]as the kernel.Under bit-level code construction,some partially-froze...In this paper,we propose a new class of nonbinary polar codes,where the symbol-level polarization is achieved by using a 2×2 q-ary matrix[10β1]as the kernel.Under bit-level code construction,some partially-frozen symbols exist,where the frozen bits in these symbols can be used as activecheck bits to facilitate the decoder.The encoder/decoder of the proposed codes has a similar structure to the original binary polar codes,admitting an easily configurable and flexible implementation,which is an obvious advantage over the existing nonbinary polar codes based on ReedSolomon(RS)codes.A low-complexity decoding method is also introduced,in which only more competitive symbols are considered rather than the whole q symbols in the finite field.To support high spectral efficiency,we also present,in addition to the single level coded modulation scheme with field-matched modulation order,a mixed multilevel coded modulation scheme with arbitrary modulation in order to trade off the latency against complexity.Simulation results show that our proposed nonbinary polar codes exhibit comparable performance with the RS4-based polar codes and outperform binary polar codes with low decoding latency,suggesting a potential application for future ultra-reliable and low-latency communications(URLLC).展开更多
基金supported in part by National Basic Research Program of China under Grant No.2012CB316100National Natural Science Foundation of China under Grants 61372074 and 91438101+1 种基金Joint Funds of the National Natural Science Foundation of China under Grant No.U1504601Science and Technology on Communication Networks Laboratory under Grant KX132600032
文摘In this paper, we study the rank of matrices over GF(2~p),and propose two construction methods for algebraic-based nonbinary LDPC codes from an existing LDPC code, referred to as the original code. By multiplying all elements of each column of the binary parity-check matrix H corresponding to the original code with the same nonzero element of any field, the first class of nonbinary LDPC codes with flexible field order is proposed. The second method is to replace the nonzero elements of some columns in H with different nonzero field elements in a given field, and then another class of nonbinary LDPC codes with various rates is obtained. Simulation results show that the proposed nonbinary LDPC codes perform well over the AWGN channel with the iterative decoding algorithms.
基金supported in part by National Natural Science Foundation of China under Grants 61372074,91438101,61103143,U1504601,and U1404622Key Scientific and Technological Project of Henan under Grants 162102310589 and 172102310124
文摘In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.
基金This work was supported by the National Natural Science Foundation of China(Grant No.60373059)the National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20040013007)the ISN Open Foundation, and the National Laboratory for Moderm Communications Science Foun-dation of China (Grant No.51436020103DZ4001).
文摘Using the graph method proposed by Schlingemann and Werner, this paper introduces a technique to construct nonbinary quantum cyclic codes and provides a specific example. We also construct the quantum codes [[8, 2, 4]]p and [[n, n - 2, 2]]p for all odd primes p by the graph method.
基金supported in part by the National Key R&D Program of China(2021YFA1000500)by the National Natural Science Foundation of China(62171356).
文摘In this paper,we propose a new class of nonbinary polar codes,where the symbol-level polarization is achieved by using a 2×2 q-ary matrix[10β1]as the kernel.Under bit-level code construction,some partially-frozen symbols exist,where the frozen bits in these symbols can be used as activecheck bits to facilitate the decoder.The encoder/decoder of the proposed codes has a similar structure to the original binary polar codes,admitting an easily configurable and flexible implementation,which is an obvious advantage over the existing nonbinary polar codes based on ReedSolomon(RS)codes.A low-complexity decoding method is also introduced,in which only more competitive symbols are considered rather than the whole q symbols in the finite field.To support high spectral efficiency,we also present,in addition to the single level coded modulation scheme with field-matched modulation order,a mixed multilevel coded modulation scheme with arbitrary modulation in order to trade off the latency against complexity.Simulation results show that our proposed nonbinary polar codes exhibit comparable performance with the RS4-based polar codes and outperform binary polar codes with low decoding latency,suggesting a potential application for future ultra-reliable and low-latency communications(URLLC).