Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online...Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic ge- netic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu- ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili- ty of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor- mation for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation.展开更多
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav...The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.展开更多
基金Sponsored by National Natural Science Foundation of China(61290323,61333007,614730646)IAPI Fundamental Research Funds(2013ZCX02-09)+1 种基金Fundamental Research Funds for the Central Universities of China(N130508002,N130108001)National High-tech Research and Development Program of China(2015AA043802)
文摘Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic ge- netic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu- ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili- ty of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor- mation for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation.
基金China National Science and Technology Major Project(Grant No.2017-VI-0004-0075).
文摘The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.