期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intelligent Multivariable Modeling of Blast Furnace Molten Iron Quality Based on Dynamic AGA-ANN and PCA 被引量:3
1
作者 Meng YUAN Ping ZHOU +3 位作者 Ming-liang LI Rui-feng LI Hong WANG Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第6期487-495,共9页
Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online... Blast furnace (BF) ironmaking process has complex and nonlinear dynamic characteristics. The molten iron temperature (MIT) as well as Si, P and S contents of molten iron is difficult to be directly measured online, and large-time delay exists in offline analysis through laboratory sampling. A nonlinear multivariate intelligent modeling method was proposed for molten iron quality (MIQ) based on principal component analysis (PCA) and dynamic ge- netic neural network. The modeling method used the practical data processed by PCA dimension reduction as inputs of the dynamic artificial neural network (ANN). A dynamic feedback link was introduced to produce a dynamic neu- ral network on the basis of traditional back propagation ANN. The proposed model improved the dynamic adaptabili- ty of networks and solved the strong fluctuation and resistance problem in a nonlinear dynamic system. Moreover, a new hybrid training method was presented where adaptive genetic algorithms (AGA) and ANN were integrated, which could improve network convergence speed and avoid network into local minima. The proposed method made it easier for operators to understand the inside status of blast furnace and offered real-time and reliable feedback infor- mation for realizing close-loop control for MIQ. Industrial experiments were made through the proposed model based on data collected from a practical steel company. The accuracy could meet the requirements of actual operation. 展开更多
关键词 molten iron quality blast furnace nonlinear multivariate modeling dynamic neural network principalcomponent analysis adaptive genetic algorithm
原文传递
Modified artificial neural network model with an explicit expression to describe flow behavior and processing maps of Ti2AlNb-based superalloy
2
作者 Yan-qi Fu Qing Zhao +1 位作者 Man-qian Lv Zhen-shan Cui 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第11期1451-1462,共12页
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav... The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters. 展开更多
关键词 Modified artificial neural network model Ti2AlNb superalloy Double multivariate nonlinear regression model Explicit expression Processing map
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部