期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrodinger equation with sextic operator under non-zero boundary conditions
1
作者 Luyao Zhang Xiyang Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期268-280,共13页
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main... We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons. 展开更多
关键词 double-pole solitons double-pole breathers Riemann-Hilbert problem non-zero boundary con-ditions nonlinear schrodinger equation with sextic operator
原文传递
Conservation laws of the generalized nonlocal nonlinear Schrodinger equation 被引量:5
2
作者 欧阳世根 郭旗 +1 位作者 吴立军 兰胜 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第8期2331-2337,共7页
The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltoni... The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented. 展开更多
关键词 nonlocal nonlinear schrodinger equation conservation law LAGRANGIAN
原文传递
Exact Solutions for a Higher-Order Nonlinear Schrodinger Equation in Atmospheric Dynamics 被引量:3
3
作者 HUANG Fei TANG Xiao-Yan LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期573-576,共4页
By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ... By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schroetinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena. 展开更多
关键词 higher-order nonlinear schrodinger equation atmospheric dynamics bright solitary wave dark solitary wave
下载PDF
Asymptotical solutions of coupled nonlinear Schrodinger equations with perturbations 被引量:2
4
作者 程雪苹 林机 叶丽军 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2503-2509,共7页
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ... In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations. 展开更多
关键词 direct perturbation method perturbed coupled nonlinear schrodinger equations soli- tons asymptotical solutions
原文传递
A NONLINEAR SCHRODINGER EQUATION WITH COULOMB POTENTIAL 被引量:1
5
作者 Changxing MIAO Junyong ZHANG Jiqiang ZHENG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第6期2230-2256,共27页
In this paper,we study the Cauchy problem for the nonlinear Schrodinger equations with Coulomb potential i■_(t)u+△u+k/|x|u=λ/|u|^(p-l)u with 1<p≤5 on R^(3).Our results reveal the influence of the long range pot... In this paper,we study the Cauchy problem for the nonlinear Schrodinger equations with Coulomb potential i■_(t)u+△u+k/|x|u=λ/|u|^(p-l)u with 1<p≤5 on R^(3).Our results reveal the influence of the long range potential K|x|^(-1)on the existence and scattering theories for nonlinear Schrodinger equations.In particular,we prove the global existence when the Coulomb potential is attractive,i.e.,when K>0,and the scattering theory when the Coulomb potential is repulsive,i.e.,when K≤O.The argument is based on the newlyestablished interaction Morawetz-type inequalities and the equivalence of Sobolev norms for the Laplacian operator with the Coulomb potential. 展开更多
关键词 nonlinear schrodinger equations long range potential global well-posedness BLOW-UP SCATTERING
下载PDF
Deformed soliton,breather,and rogue wave solutions of an inhomogeneous nonlinear Schrodinger equation 被引量:1
6
作者 陶勇胜 贺劲松 K. Porsezian 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期237-241,共5页
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained f... We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition. 展开更多
关键词 inhomogeneous nonlinear schrodinger equation Lax pair Darboux transformation SOLITON
原文传递
Rogue Waves in the(2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential 被引量:1
7
作者 刘芸恺 李彪 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第1期6-9,共4页
The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equati... The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane. 展开更多
关键词 NLS Dimensional nonlinear schrodinger equation with a Parity-Time-Symmetric Potential Rogue Waves in the
原文传递
Dark and multi-dark solitons in the three-component nonlinear Schrodinger equations on the general nonzero background 被引量:1
8
作者 Zhi-Jin Xiong Qing Xu Liming Ling 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期60-67,共8页
We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obt... We exhibit some new dark soliton phenomena on the general nonzero background for a defocusing three-component nonlinear Schrodinger equation. As the plane wave background undergoes unitary transformation SU(3), we obtain the general nonzero background and study its modulational instability by the linear stability analysis. On the basis of this background, we study the dynamics of one-dark soliton and two-dark-soliton phenomena, which are different from the dark solitons studied before. Furthermore, we use the numerical method for checking the stability of the one-dark-soliton solution. These results further enrich the content in nonlinear Schrodinger systems, and require more in-depth studies in the future. 展开更多
关键词 dark soliton three-component nonlinear schrodinger equations general nonzero background
原文传递
Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrodinger equation 被引量:1
9
作者 Li-Jun Song Xiao-Ya Xu Yan Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期216-223,共8页
Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studi... Based on the generalized coupled nonlinear Schr¨odinger equation,we obtain the analytic four-bright–bright soliton solution by using the Hirota bilinear method.The interactions among four solitons are also studied in detail.The results show that the interaction among four solitons mainly depends on the values of solution parameters;k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons;the pulse velocity and width mainly depend on the imaginary part of ki(i=1,2,3,4),while the pulse amplitude mainly depends on the real part of ki(i=1,2,3,4). 展开更多
关键词 coupled nonlinear schrodinger equation four-soliton solution soliton interaction
原文传递
Lie Symmetries,1-Dimensional Optimal System and Optimal Reductions of(1+2)-Dimensional Nonlinear Schrodinger Equation 被引量:1
10
作者 Meirong Mu Chaolu Temuer 《Journal of Applied Mathematics and Physics》 2014年第7期603-620,共18页
For a class of (1 + 2)-dimensional nonlinear Schrodinger equations, classical symmetry algebra is found and 1-dimensional optimal system, up to conjugacy, is constructed. Its symmetry reductions are performed for each... For a class of (1 + 2)-dimensional nonlinear Schrodinger equations, classical symmetry algebra is found and 1-dimensional optimal system, up to conjugacy, is constructed. Its symmetry reductions are performed for each class, and someexamples of exact invainvariant solutions are given. 展开更多
关键词 nonlinear schrodinger equation Classical Symmetry Optimal System Symmetry Reductions Invariant Solutions
下载PDF
Generalized Darboux Transformation and Rational Solutions for the Nonlocal Nonlinear Schrodinger Equation with the Self-Induced Parity-Time Symmetric Potential 被引量:1
11
作者 Jian Chen 《Journal of Applied Mathematics and Physics》 2015年第5期530-536,共7页
In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the it... In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the iterative rule and it can be expressed by the determinant form. In particular, I calculate first-order and second-order rational solutions and obtain their figures according to different parameters. 展开更多
关键词 Generalized Darboux Transformation Rational Solutions Nonlocal nonlinear schrodinger equation
下载PDF
Covariant Prolongation Structure of Coupled Inhomogeneous Nonlinear Schrodinger Equation
12
作者 邓明 李民丽 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第2期218-222,共5页
We investigate the coupled inhomogeneous nonlinear Schrodinger equation by the covariant prolongationstructure theory, and obtain its Lax's representation. Moreover, we present the corresponding Riccati equations,... We investigate the coupled inhomogeneous nonlinear Schrodinger equation by the covariant prolongationstructure theory, and obtain its Lax's representation. Moreover, we present the corresponding Riccati equations, Backlundtransformation, and one-soliton solution. 展开更多
关键词 coupled inhomogeneous nonlinear schrodinger equation covariant prolongation structure Riccatiequations Backlund transformation
下载PDF
Nonautonomous solitons in the continuous wave background of the variable-coefficient higher-order nonlinear Schrodinger equation
13
作者 戴朝卿 陈未路 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期143-146,共4页
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ... We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system. 展开更多
关键词 higher-order nonlinear schrodinger equation soliton solution continuous wave background postponed disappearance and sustainment of soliton
原文传递
A nonlinear Schrodinger equation for gravity waves slowly modulated by linear shear flow
14
作者 Shaofeng Li Juan Chen +1 位作者 Anzhou Cao Jinbao Song 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期215-222,共8页
Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis me... Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it. 展开更多
关键词 nonlinear schrodinger equation gravity waves linear shear flow modulational instability
原文传递
A Family of Exact Solutions for the Nonlinear Schrodinger Equation
15
作者 HUANG De bin, LIU Zeng rong Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200436, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第4期273-275,共3页
In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLS equation were explicitly given by the elliptic functions. Then a family of exact solutions ... In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLS equation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these stationary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations. 展开更多
关键词 nonlinear schrodinger equation stationary solutions exact solutions
下载PDF
The Natures of Microscopic Particles Depicted by Nonlinear Schrodinger Equation in Quantum Systems
16
作者 Xiaofeng Pang 《Journal of Physical Science and Application》 2011年第2期57-84,共28页
When the microscopic particles was depicted by linear Schrodinger equation, we find that the particles have only a wave feature, thus, a series of difficulties and intense disputations occur in quantum mechanics. Thes... When the microscopic particles was depicted by linear Schrodinger equation, we find that the particles have only a wave feature, thus, a series of difficulties and intense disputations occur in quantum mechanics. These problems excite us to consider the nonlinear interactions among the particles or between the particle and background field, which is completely ignored in quantum mechanics. Thus we use the nonlinear Schrodinger equation to describe the natures of microscopic particles. In this case the natures and features of microscopic particles are considerably different from those in quantum mechanics, where the microscopic particles are localized and have truly a wave-particle duality. Meanwhile, they satisfy both the classical dynamics equation and Lagrangian and Hamilton equations and obey the conservation laws of mass, energy and momentum. These natures and features are due to the nonlinear interactions, which are generated in virtue of the interaction between the moved particles and background field through the mechanisms of self-trapping, self-focus and self-condensation. Finally, we verified experimentally the localization and wave-corpuscle features of microscopic particles described by the nonlinear Schrodinger equation using the properties of water soliton and optical-soliton depicted also by the nonlinear Schrodinger equation in water and optical fiber, respectively. Therefore, the new nonlinear quantum theory established on the basis of nonlinear Schrodinger equation is correct and credible. From this investigation we can not only solve difficulties and problems disputed for about a century by plenty of scientists in quantum mechanics but also promote the development of physics and enhance the knowledge and recognition levels to the essences of microscopic matter. 展开更多
关键词 Microscopic particle nonlinear interaction quantum mechanics nonlinear systems nonlinear schrodinger equation wave-particle duality motion rule.
下载PDF
The Interaction and Degeneracy of Mixed Solutions for Derivative Nonlinear Schrodinger Equation
17
作者 Zhen Wu Shuwei Xu +1 位作者 Tingwang Wu Haoqi Zhou 《Journal of Applied Mathematics and Physics》 2019年第11期2650-2657,共8页
The mixed solutions of the derivative nonlinear Schr&#246;dinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of m... The mixed solutions of the derivative nonlinear Schr&#246;dinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of mixed solutions, it is possible to obtain different types of solutions: phase solutions, breather solutions, phase-breather solutions and rogue waves. 展开更多
关键词 Derivative nonlinear schrodinger equation Mixed Solutions Phase Solutions Breather Solutions Rogue Waves
下载PDF
Lie Symmetries,One-Dimensional Optimal System and Optimal Reduction of(2+1)-Coupled nonlinear Schrodinger Equations
18
作者 A.Li Chaolu Temuer 《Journal of Applied Mathematics and Physics》 2014年第7期677-690,共14页
For a class of (1 + 2)-dimensional nonlinear Schrodinger equations, the infinite dimensional Lie algebra of the classical symmetry group is found and the one-dimensional optimal system of an 8-dimensional subalgebra o... For a class of (1 + 2)-dimensional nonlinear Schrodinger equations, the infinite dimensional Lie algebra of the classical symmetry group is found and the one-dimensional optimal system of an 8-dimensional subalgebra of the infinite Lie algebra is constructed. The reduced equations of the equations with respect to the optimal system are derived. Furthermore, the one-dimensional optimal systems of the Lie algebra admitted by the reduced equations are also constructed. Consequently, the classification of the twice optimal symmetry reductions of the equations with respect to the optimal systems is presented. The reductions show that the (1 + 2)-dimensional nonlinear Schrodinger equations can be reduced to a group of ordinary differential equations which is useful for solving the related problems of the equations. 展开更多
关键词 nonlinear schrodinger equations Lie Aymmetry Group Lie algebra Optimal System
下载PDF
Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrodinger equation 被引量:1
19
作者 Ming-Ming Li Cheng-Lai Hu +2 位作者 Jun Wu Xian-Jing Lai Yue-Yue Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期130-135,共6页
The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstl... The three-coupling modified nonlinear Schr?dinger(MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein. 展开更多
关键词 SOLITON three-coupling nonlinear modified schrodinger equation similarity transformation
原文传递
A local refinement purely meshless scheme for time fractional nonlinear Schrodinger equation in irregular geometry region
20
作者 Tao Jiang Rong-Rong Jiang +2 位作者 Jin-Jing Huang Jiu Ding Jin-Lian Ren 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期164-175,共12页
A local refinement hybrid scheme(LRCSPH-FDM)is proposed to solve the two-dimensional(2D)time fractional nonlinear Schrodinger equation(TF-NLSE)in regularly or irregularly shaped domains,and extends the scheme to predi... A local refinement hybrid scheme(LRCSPH-FDM)is proposed to solve the two-dimensional(2D)time fractional nonlinear Schrodinger equation(TF-NLSE)in regularly or irregularly shaped domains,and extends the scheme to predict the quantum mechanical properties governed by the time fractional Gross-Pitaevskii equation(TF-GPE)with the rotating Bose-Einstein condensate.It is the first application of the purely meshless method to the TF-NLSE to the author’s knowledge.The proposed LRCSPH-FDM(which is based on a local refinement corrected SPH method combined with FDM)is derived by using the finite difference scheme(FDM)to discretize the Caputo TF term,followed by using a corrected smoothed particle hydrodynamics(CSPH)scheme continuously without using the kernel derivative to approximate the spatial derivatives.Meanwhile,the local refinement technique is adopted to reduce the numerical error.In numerical simulations,the complex irregular geometry is considered to show the flexibility of the purely meshless particle method and its advantages over the grid-based method.The numerical convergence rate and merits of the proposed LRCSPH-FDM are illustrated by solving several 1D/2D(where 1D stands for one-dimensional)analytical TF-NLSEs in a rectangular region(with regular or irregular particle distribution)or in a region with irregular geometry.The proposed method is then used to predict the complex nonlinear dynamic characters of 2D TF-NLSE/TF-GPE in a complex irregular domain,and the results from the posed method are compared with those from the FDM.All the numerical results show that the present method has a good accuracy and flexible application capacity for the TF-NLSE/GPE in regions of a complex shape. 展开更多
关键词 Caputo fractional derivative nonlinear schrodinger/Gross-Pitaevskii equation corrected smoothed particle hydrodynamics irregularly domain
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部