Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and s...In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and slate of the Upper Permian Linxi Formation were encountered.Source rock geochemistry analysis of the samples show that the organic matter abundance of the Upper Permian Linxi Formation source rock in the north of Songliao Basin is high,which belongs to medium to good source rock.The organic matter belongs to type Ⅱ,and it is in the evolution stage of highly mature to over mature.The Pr/Ph ratios of the source rocks range from 0.16 to 0.93,with an average of 0.53.The phytane predominance is obvious,and indicates a strong reduction to reduction sedimentary environment,which is conducive to the preservation of organic matter.Pr/nC_(17),Ph/nC_(18) and C_(27)–C_(28)–C_(29) regular steranes indicate that the organic matter was derived from a mixture of vascular plants and aquatic organisms such as algae,and is mainly contributed by phytoplankton.Through comprehensive analysis,it is considered that the source rocks of the Upper Permian Linxi Formation in northern Songliao Basin have entered the gas generation stage and have shale gas exploration prospects.展开更多
Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury inject...Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury injection, experiment methods of supercritical carbon dioxide displacement and extraction are firstly employed to quantify crude oil mobility in tight sand reservoirs with different lithologies and oil contents. The results show that, under the conditions of simulating the Cretaceous Qingshankou Formation in the northern Songliao Basin at a temperature of 76-89 °C and a pressure of 35-42 MPa, the lower limit of the porosity of the movable oil is4.4%, and the lower limit of the permeability is 0.015′10-3 mm2. The lower limit of the average pore throat radius is 21 nm. On this basis,a classification standard for three types of tight sand reservoirs is proposed. Type I reservoirs are characterized by the movable fluid saturation larger than 40%, the movable oil ratio(ratio of movable oil to total oil) greater than 30% and the starting pressure gradient in the range of 0.3-0.6 MPa/m; Type II reservoirs are characterized by the movable fluid saturation in the range of 10%–40%, the movable oil ratio in the range of 5%–30% and the starting pressure gradient in the range of 0.6–1.0 MPa/m; Type III reservoirs are characterized by the movable fluid saturation less than 10% in general, the movable oil ratio less than 5%, and the starting pressure gradient greater than1.0 MPa/m. The fluid mobility in tight sand reservoirs is mainly affected by diagenesis and sedimentary environment. Reservoirs with depth lower than 2000 m are dominated by type I reservoir, whereas those with greater depth are dominated by type I and II reservoirs.Reservoirs in inner delta-front facies are dominated by type I reservoir, whereas those in outer delta-front facies and shore-shallow lacustrine facies are dominated by type II and III reservoirs.展开更多
The Xushen gas field,located in the north of Songliao Basin,is a potential giant gas area for China in the future.Its proved reserves have exceeded 1000×10 8 m 3 by the end of 2005.But,the origin of natural gases...The Xushen gas field,located in the north of Songliao Basin,is a potential giant gas area for China in the future.Its proved reserves have exceeded 1000×10 8 m 3 by the end of 2005.But,the origin of natural gases from the deep strata is still in debating.Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin.According to pyrolysis experiments for these rocks in the semi-confined system,gas production and geochemistry of alkane gases are discussed in this paper.The Carboniferous-Permian epimetamorphic rocks were heated from 300℃to 550℃,with temperature interval of 50℃.The gas production was quantified and measured for chemical and carbon isotopic compositions.Results show thatδ13C 1 is less than?20‰,carbon isotope trend of alkane gas isδ13C 1 <δ13C 2 <δ13C 3 orδ13C 1 <δ13C 2 >δ13C 3 ,these features suggest that the gas would be coal-type gas at high-over maturity,not be inorganic gas with reversal trend of gaseous alkanes (δ13C 1 >δ13C 2 >δ13C 3 ).These characteristics of carbon isotopes are similar with the natural gas from the basin basement,but disagree with gas from the Xingcheng reservoir.Thus,the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes.The gas generation intensity for epimetamorphic rocks is 3.0×10 8 ―23.8×10 8 m 3 /km 2 ,corresponding to Ro from 2.0%to 3.5%for organic matter.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金Supported by the National Key Research and Development Program of China(No.2019YFC0605404)China Geological Survey Project(Nos.DD20221664 and DD20190097)。
文摘In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and slate of the Upper Permian Linxi Formation were encountered.Source rock geochemistry analysis of the samples show that the organic matter abundance of the Upper Permian Linxi Formation source rock in the north of Songliao Basin is high,which belongs to medium to good source rock.The organic matter belongs to type Ⅱ,and it is in the evolution stage of highly mature to over mature.The Pr/Ph ratios of the source rocks range from 0.16 to 0.93,with an average of 0.53.The phytane predominance is obvious,and indicates a strong reduction to reduction sedimentary environment,which is conducive to the preservation of organic matter.Pr/nC_(17),Ph/nC_(18) and C_(27)–C_(28)–C_(29) regular steranes indicate that the organic matter was derived from a mixture of vascular plants and aquatic organisms such as algae,and is mainly contributed by phytoplankton.Through comprehensive analysis,it is considered that the source rocks of the Upper Permian Linxi Formation in northern Songliao Basin have entered the gas generation stage and have shale gas exploration prospects.
基金Supported by the PetroChina Science and Technology Project(2012E-2603-06)
文摘Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury injection, experiment methods of supercritical carbon dioxide displacement and extraction are firstly employed to quantify crude oil mobility in tight sand reservoirs with different lithologies and oil contents. The results show that, under the conditions of simulating the Cretaceous Qingshankou Formation in the northern Songliao Basin at a temperature of 76-89 °C and a pressure of 35-42 MPa, the lower limit of the porosity of the movable oil is4.4%, and the lower limit of the permeability is 0.015′10-3 mm2. The lower limit of the average pore throat radius is 21 nm. On this basis,a classification standard for three types of tight sand reservoirs is proposed. Type I reservoirs are characterized by the movable fluid saturation larger than 40%, the movable oil ratio(ratio of movable oil to total oil) greater than 30% and the starting pressure gradient in the range of 0.3-0.6 MPa/m; Type II reservoirs are characterized by the movable fluid saturation in the range of 10%–40%, the movable oil ratio in the range of 5%–30% and the starting pressure gradient in the range of 0.6–1.0 MPa/m; Type III reservoirs are characterized by the movable fluid saturation less than 10% in general, the movable oil ratio less than 5%, and the starting pressure gradient greater than1.0 MPa/m. The fluid mobility in tight sand reservoirs is mainly affected by diagenesis and sedimentary environment. Reservoirs with depth lower than 2000 m are dominated by type I reservoir, whereas those with greater depth are dominated by type I and II reservoirs.Reservoirs in inner delta-front facies are dominated by type I reservoir, whereas those in outer delta-front facies and shore-shallow lacustrine facies are dominated by type II and III reservoirs.
文摘The Xushen gas field,located in the north of Songliao Basin,is a potential giant gas area for China in the future.Its proved reserves have exceeded 1000×10 8 m 3 by the end of 2005.But,the origin of natural gases from the deep strata is still in debating.Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin.According to pyrolysis experiments for these rocks in the semi-confined system,gas production and geochemistry of alkane gases are discussed in this paper.The Carboniferous-Permian epimetamorphic rocks were heated from 300℃to 550℃,with temperature interval of 50℃.The gas production was quantified and measured for chemical and carbon isotopic compositions.Results show thatδ13C 1 is less than?20‰,carbon isotope trend of alkane gas isδ13C 1 <δ13C 2 <δ13C 3 orδ13C 1 <δ13C 2 >δ13C 3 ,these features suggest that the gas would be coal-type gas at high-over maturity,not be inorganic gas with reversal trend of gaseous alkanes (δ13C 1 >δ13C 2 >δ13C 3 ).These characteristics of carbon isotopes are similar with the natural gas from the basin basement,but disagree with gas from the Xingcheng reservoir.Thus,the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes.The gas generation intensity for epimetamorphic rocks is 3.0×10 8 ―23.8×10 8 m 3 /km 2 ,corresponding to Ro from 2.0%to 3.5%for organic matter.