期刊文献+
共找到407,089篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Computation in Airflow Field of Compact Spinning with Pneumatic Groove 被引量:1
1
作者 竺韵德 邬建明 《Journal of Donghua University(English Edition)》 EI CAS 2010年第1期58-62,共5页
In compact spinning with pneumatic groove,the computational fluid dynamic model,computed with parallel technologies & Fluent 6.3,is developed to simulate the flow field in condensing zone with 3D computational flu... In compact spinning with pneumatic groove,the computational fluid dynamic model,computed with parallel technologies & Fluent 6.3,is developed to simulate the flow field in condensing zone with 3D computational fluid dynamic (CFD) technology.Flowing state,distribution rules of static pressure,and velocity in condensing zone are characterized and analyzed.The results show that the fiber bundle in compact spinning with pneumatic groove is compacted by airflow and the shape of the pneumatic groove,and the static pressure in condensing zone is negative,as well as the velocity of airflow in condensing zone is not zero.The fluctuation frequencies of the static pressure and velocity near the bottom of the pneumatic groove are relatively higher,and the number of the fluctuation is equal to that of the round holes in condensing zone. 展开更多
关键词 compact spinning pneumatic groove numerical computation compact principle
下载PDF
Wind Tunnel Test and Numerical Computation on Ice Accretion on Blade Airfoil for Straight-bladed VAWT
2
作者 LI Shengmao LI Yan +2 位作者 FENG Fang WANG Lijun CHI Yuan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期71-75,共5页
To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wi... To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured. Then the numerical computation was carried out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed. 展开更多
关键词 vertical axis wind turbine (VAWT) straight-bladed ice accretion wind tunnel test numerical computation aerodynamic characteristic
下载PDF
3-D NUMERICAL COMPUTATION OF JET ARRAY IMPINGEMENT WITH INITIAL CROSSFLOW 被引量:2
3
作者 LIYong-kang ZHANGJing-zhou TANXiao-ming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期128-133,共6页
The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-c... The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing. 展开更多
关键词 横流阵列 射流冲击 三维数值 计算 强化传热
下载PDF
Numerical Computation of Figure-eight Solution for 3-body Problems
4
作者 徐乐顺 冀书关 《Northeastern Mathematical Journal》 CSCD 2007年第3期226-230,共5页
The main goal of this paper is to compute the Figure-eight solutions for the planar Newtonian 3-body problem with equal masses by finding the critical points of the functional associated with the motion equations of 3... The main goal of this paper is to compute the Figure-eight solutions for the planar Newtonian 3-body problem with equal masses by finding the critical points of the functional associated with the motion equations of 3-body in plane R^2.The algorithm adopted here is the steepest descent method,which is simple but very valid for our problem. 展开更多
关键词 稳定性理论 数值计算 8字形算法 解题法
下载PDF
Pulse cleaning flow models and numerical computation of candle ceramic filters
5
作者 Tian, Gui-shan Ma, Zhen-ji +1 位作者 Zhang, Xin-yi Xu, Ting-xiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期210-215,共6页
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cle... Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained. 展开更多
关键词 烛式陶瓷滤器 反向脉动除尘 数字计算模式 压差
下载PDF
Numerical computation and analysis of unsteady viscous flow around autonomous underwater vehicle with propellers based on sliding mesh 被引量:4
6
作者 高富东 潘存云 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第4期944-952,共9页
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment,which realizes the multi-motion modes of the autonomous underwater vehicle(AUV) such as vectored thruster and wheeled mo... The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment,which realizes the multi-motion modes of the autonomous underwater vehicle(AUV) such as vectored thruster and wheeled movement.In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water,the computational fluid dynamics(CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes(RANS) equations,shear-stress transport(SST) k-w model and pressure with splitting of operators(PISO) algorithm based on sliding mesh.The hydrodynamic parameters of AUV with propellers such as resistance,pressure and velocity are got,which reflect well the real ambient flow field of AUV with propellers.Then,the semi-implicit method for pressure-linked equations(SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers,respectively.The computational results agree well with the experimental data,which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance.The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance,pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers,which provides an effective reference to the study on noise and vibration of AUV hull and propellers in real environment.It also provides technical support for the design of new AUVs. 展开更多
关键词 自治水下机器人 数值计算 粘性流场 螺旋桨 非定常流 水下航行器 计算流体动力学 航行船体
下载PDF
Numerical computation and analysis of high-speed autonomous underwater vehicle (AUV) moving in head sea based on dynamic mesh 被引量:2
7
作者 高富东 潘存云 +1 位作者 徐小军 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第11期3084-3093,共10页
Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions.The movement forms and flow field characteristics of a multi-movin... Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions.The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied.The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory,which was solved to get the heave and pitch of the AUV by Gaussian elimination method.Based on this,computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations,shear-stress transport (SST) k-w model and volume of fluid (VOF) model.The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition.The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh.The hydrodynamic parameters of the AUV such as drag,lift,pitch torque,velocity,pressure,and wave profile were got,which reflect well the real ambient flow field of the AUV navigating in head sea at high speed.The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle.The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively,which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environment. 展开更多
关键词 自治水下机器人 三维数值计算 AUV NAVIER-STOKES方程 动态网 基础 自主水下航行器 计算流体动力学
下载PDF
Basic Numerical Computational Using Scilab Programming
8
作者 Z. Salleh M.Y.M. Yusop S.B Ismail 《Journal of Mathematics and System Science》 2013年第9期437-441,共5页
关键词 SCILAB 计算机编程 数值计算 数学模型 常微分方程 数值方法 科学家 矩阵
下载PDF
Interval of effective time-step size for the numerical computation of nonlinear ordinary differential equations
9
作者 CAO Jing LI Jian-Ping ZHANG Xin-Yuan 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第1期17-20,共4页
由于满足计算的不确定性原理,需适当选取时间步长以保证非线性常微分方程组数值解的可靠性,目前尚未见关于有效步长区间的理论结果。本文对于给定的误差限,将方法截断误差与机器舍入误差的相关曲线分别进行平移,从而得到一种确定有效步... 由于满足计算的不确定性原理,需适当选取时间步长以保证非线性常微分方程组数值解的可靠性,目前尚未见关于有效步长区间的理论结果。本文对于给定的误差限,将方法截断误差与机器舍入误差的相关曲线分别进行平移,从而得到一种确定有效步长近似区间的方法,并推导出近似区间相比于原区间的相对误差公式。另外,研究了有效步长区间随积分时间的变化规律,并对已有的数值结果给出解释。本文所得结论可为数值求解常微分方程组选取有效步长并得到可靠的数值解提供理论支持。 展开更多
关键词 常微分方程 有效步长区间 不确定性原理 积分时间 相对误差
下载PDF
Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries
10
作者 刘晓毅 徐献芝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第5期571-576,共6页
This work creates a droplet battery model based on the electrolyte performance in the porous electrode,studies the current density on the mesoscopic scale,and explains how the mesoscopic structure of the porous electr... This work creates a droplet battery model based on the electrolyte performance in the porous electrode,studies the current density on the mesoscopic scale,and explains how the mesoscopic structure of the porous electrode influences the current density on the air-diffusion electrode.Near the three-phase line,there is a strong band containing nearly 80% current.For porous electrodes,the total current is proportional to the length of the strong band.Thus,it can be inferred that on the macroscopic scale,the longer the total length of the strong band on unit area is,the larger the current density is. 展开更多
关键词 空气扩散电极 空气电池 数值计算模型 多孔电极模型 电流密度 金属 细观 介观尺度
下载PDF
Numerical simulations for radon migration and exhalation behavior during measuring radon exhalation rate with closed-loop method
11
作者 Ming Xia Yong-Jun Ye Shu-Yuan Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期81-95,共15页
Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experim... Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate. 展开更多
关键词 Radon exhalation numerical simulation Accumulation chamber
下载PDF
Numerical study on the cavity dynamics for vertical water entries of twin spheres
12
作者 Xu Wang Xujian Lyu +1 位作者 Ruisheng Sun Dongdong Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期459-472,共14页
In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbul... In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries. 展开更多
关键词 Twin water entries Side-by-side CAVITY numerical simulation
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
13
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train
14
作者 Tian Li Hao Liang +1 位作者 Zerui Xiang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期463-473,共11页
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ... A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car. 展开更多
关键词 Vortex generator aerodynamic drag REDUCTION numerical simulation
下载PDF
From the perspective of experimental practice: High-throughput computational screening in photocatalysis
15
作者 Yunxuan Zhao Junyu Gao +2 位作者 Xuanang Bian Han Tang Tierui Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is... Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors. 展开更多
关键词 PHOTOCATALYSIS High-throughput computational screening PHOTOCATALYST Theoretical simulations Experiments
下载PDF
Multi-physical fields distribution in billet during helical electromagnetic stirring:A numerical simulation research
16
作者 Dong Pan Qing-tao Guo +3 位作者 Kai-lun Zhang Fu-zhi Yu Yu-ying Li Yu-bao Xiao 《China Foundry》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens... Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets. 展开更多
关键词 BILLET electromagnetic stirring HELICAL SOLIDIFICATION element segregation numerical simulation
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study
17
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
18
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE computational fluid dynamics Thermal decomposition reaction Pyrolysis furnace
下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
19
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
原文传递
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
20
作者 Zhao-yang Yin Qi-chi Le +3 位作者 Yan-chao Jiang Da-zhi Zhao Qi-yu Liao Qi Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u... A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20). 展开更多
关键词 dual-frequency ultrasonic numerical model acoustic pressure spatial interaction magnesium alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部