To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring b...To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.展开更多
An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this at...An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this atypical occlusion process was significantly different from the traditional, synoptic-scale occlusion process that occurs within extratropical cyclones. It was caused by the merger of two cold-type mesoscale fronts. One of the fronts developed from the gust front of convective storms, while the other was a sea-breeze front. As the two fronts moved towards each other, the warm air between them was squeezed and separated from the surface. An atypical occluded front was formed when the two fronts merged, with the warm air forced aloft. This kind of occlusion is termed a "merger" process, different from the well-known "catch-up" and "wrap-up" processes. Moreover, local convection was found to be enhanced during the merger process, with severe convective weather produced in the merger area.展开更多
基金The National Natural Science Foundation of China(No.60972001,61374194)
文摘To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.
基金supported by the National Research Fund for Public Welfare (Grant No.GYHY200906011)the National Key Technology R&D Program of China (Grant No.2009BAC51B01)the National Fundamental 973 Research Program of China (Grant No.2013CB430100)
文摘An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this atypical occlusion process was significantly different from the traditional, synoptic-scale occlusion process that occurs within extratropical cyclones. It was caused by the merger of two cold-type mesoscale fronts. One of the fronts developed from the gust front of convective storms, while the other was a sea-breeze front. As the two fronts moved towards each other, the warm air between them was squeezed and separated from the surface. An atypical occluded front was formed when the two fronts merged, with the warm air forced aloft. This kind of occlusion is termed a "merger" process, different from the well-known "catch-up" and "wrap-up" processes. Moreover, local convection was found to be enhanced during the merger process, with severe convective weather produced in the merger area.