Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-E...Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-EOR and storage perfor-mance in ROZs for Water-Alternating-CO_(2)(WAG)flooding,a multi-compositional CO_(2) miscible model with molecular diffusion was developed.The effects of formation parameters(porosity,permeability,temperature),operation parameters(bottom hole pressure,WAG ratio,pore volume of injected water),and diffusion coeffcient on the coupled CO_(2)-EOR and storage were investigated.Five points from the CO_(2) sequestration curve and the oil recovery factor curve were selected to help better analyze coupled CO_(2)-EOR and storage.The results demonstrate that enhanced performance is observed when formation permeability is higher and a larger volume of water is injected.On the other hand,the performance diminishes with increasing porosity,molecular diffusion of gas,and the WAG ratio.When the temperature is around 100℃,coupled CO_(2)-EOR and storage performance is the worst.To achieve optimal miscible flooding,it is recommended to maintain the bottom hole pressure(BHP)of the injection well above 1.2 minimum miscibility pressure(MMP),while ensuring that the BHP of the production well remains sufficiently high.Furthermore,the tapered WAG flooding strategy proves to be profitable for enhanced oil recovery,as compared to a WAG ratio of 0.5:1,although it may not be as effective for CO_(2) sequestration.展开更多
Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it h...Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs.展开更多
Dried fish are susceptible to bacteria and fungi attack and are liable to chemical changes which cause losses in quality and reduction of shelf-life. It is important therefore to maintain the quality of fish because c...Dried fish are susceptible to bacteria and fungi attack and are liable to chemical changes which cause losses in quality and reduction of shelf-life. It is important therefore to maintain the quality of fish because continuous consumption of contaminated fish and their products may predispose consumers to health hazards. Maintenance of high quality fish therefore calls for adequate and effective preservation techniques. The study examined the effectiveness of essential oils of Ocimum basilicum and Ocimum gratissimum from two Agro-ecological zones of Cameroon in limiting the microbial proliferation and preserving the quality of smoke-dried Oreochromis niloticus fish stored at 25˚C for two months. The plant materials were harvested from the Western Highlands and Monomodal Humid Forest agroecological zones of Cameroon. Extraction of the essential oil from the plants was done by hydro-distillation. The fish species (Oreochromis niloticus) used in this study was chosen based on a survey study on the most consumed species of freshwater smoke-dried fish in the Western Highlands and Monomodal Humid Forest Agro-ecological zones of Cameroon. Heterotrophic bacteria counts, fungi counts and Enterobacteriaceae counts were used to assess the level heterotrophic bacteria, fungi and Enterobacteriaceae respectively in the fish samples during storage and were done by culture techniques using total plate count agar, potato dextrose agar and violet red bile glucose agar respectively. Total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance assays were used as spoilage indices to assess the nutritional quality of the fish during storage. From the survey study, Oreochromis niloticus was the most consumed smoke-dried fish in the Western Highlands (35.45%) and Monomodal Humid Forest (34.55%) agroecological zones. All the EOs caused a significant reduction in the microbial loads, total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance of smoke-dried Oreochromis niloticus as storage progressed. However, the reduction in these values was more pronounced in samples treated with essential oils of O. gratissimum from the Western Highlands, with heterotrophic bacteria, fungi and Enterobacteriaceae counts being 5.89, 6.97 and 4.59 log<sub>10</sub> cfu/g respectively at the end of the storage period. This was followed by essential oils of O. gratissimum from the Monomodal Humid Forest with heterotrophic bacteria, fungi and Enterobacteriaceae counts being 6.11, 7.79 and 4.86 log<sub>10</sub> cfu/g respectively at the end of the storage period. Also, essential oils of O. gratissimum from the Western Highlands was more effective in preserving the fish quality as lowest total volatile basic nitrogen (12.29 mg/100g), peroxide value (2.79 mEq O<sub>2</sub>·Kg<sup>−1</sup>) and thiobabituric reactive substance (1.695 mg MDA/Kg) values were observed for fish samples treated with this extract at the end of the storage period. This was followed by essential oils of O. gratissimum from the Monomodal Humid Forest with total volatile basic nitrogen (14.95 mgN/100g), Peroxide value (3.23 mEq O<sub>2</sub>·Kg<sup>−1</sup>) and thiobabituric reactive substance (2.354 mg MDA/Kg) at the end of the storage period. From the results obtained, essential oils from O. gratissimum were more effective than that from O. basilicum in the two agroecological zones and should be considered as natural alternative to chemical preservatives for further application in food preservation.展开更多
The reservoirs in the N oilfield in Sudan feature a complex sedimentary environment,which has led to a widespread development of low-resistivity oil zones,accounting for as high as 37%of the total oil zones.In this ca...The reservoirs in the N oilfield in Sudan feature a complex sedimentary environment,which has led to a widespread development of low-resistivity oil zones,accounting for as high as 37%of the total oil zones.In this case,a large number of oil zones will be misinterpreted using conventional methods.Based on the analysis of the core data and logging curves of the study area,this study concludes that the lowresistivity oil zones are formed mainly due to the high irreducible water saturation caused by the high content of illite and smectite and complex pore structure,the additional electrical conductivity induced by clay minerals,and the difference in formation water salinity between the oil zones and water zones.Furthermore,four methods are proposed to qualitatively identify these oil zones and water zones,namely the relationship analysis of five reservoir properties,cross-plotting of sensitive parameters,analysis of pressure testing data,and multi-well correlation.Furthermore,the study quantitatively calculates the initial oil saturation using the capillary pressure data,thus avoiding the conventional empirical saturation formulas depending on electrical resistivity and solving the difficulty in calculating oil saturation of low-resistivity oil zones.Finally,precise logging processing and interpretation of 95 wells in the study area are conducted using the above-mentioned comprehensive assessment system for low-resistivity oil zones.As a result,59 oil zones are newly discovered in 43 wells.Moreover,it is recommended that 17 oil zones in 12 wells should be tested,of which 11 oil zones have been tested as recommended,all proven to be high production oil zones after perforation.The coincidence rate of logging interpretation increases from 75%to 94.3%,and the original oil in place(OOIP)increases by 57.42 million barrels.All these indicate that the assessment system proposed is suitable for low-resistivity zones.展开更多
Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still un...Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still under-developed. Based on the geology and logging analysis, we redefine low-resistivity oil zones. According to their genesis, low-resis- tivity oil zones can be distinguished as five different classes: low-resistivity oil zones formed by tectonic settings, by depositional settings, by diagenetic settings, by invaded settings and those which are formed by the compounding geneses respectively. We make the following observations from this study on the definition and classification of low-resistivity oil zones: 1) A low-resistivity oil reservoir has macroscopic and microscopic unity. 2) The genesis of low-resistivity oil zones varies with the type of petroliferous basin. 3) Some low-resistivity oil zones can be forecasted based on the geological study results. 4) The results in this paper suggest that well logging information is generated from two cause mechanisms, the geophysical factors and the geological setting. Future studies on the geological background cause mechanism and the theory of well logging information will enrich the theory of logging geology and improve the ability to forecast oil zones.展开更多
The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1...The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.展开更多
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap...This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.展开更多
The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi...The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.展开更多
The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capaci...The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capacity of the pelagic and benthic realms of this Large Marine Ecosystem. Many are the ecological services provided by its waters (fisheries, tourism, aquaculture and fossil fuel reserves) to neighboring countries (US, Mexico and Cuba). However, the unprecedented volumes of hydrocarbons, gas and chemical dispersants (Corexit) introduced in the system, represent ecological stressors whose deleterious effects are still the subject of civil claims and scientific controversy. Presumably, the short scale effects were confined to the Gulf’s northeastern shallow waters, and the combined actions of weathering, biodegradation, and oil recovery left the system almost under pre-spill conditions. Unfortunately, surface and subsurface oil plumes were detected in the spill aftermath, and their dispersion trajectories threatened Mexico EEZ. Surface oil slicks were detected in the pristine waters of northern Yucatán, while subsurface oil plumes from the Macondo’s well blowout were dangerously advancing southwest towards key fishing grounds in the northwestern GoM. This disaster prompted the Mexican government to implement an ambitious ocean monitoring program adopting a bottom-up approach focused on building a base line for more than 42 physicochemical and biological variables for water, sediment and biota from the continental shelf-slope region of the NW GoM. Technological constraints have precluded systematic observations in the vast Mexican EEZ that could discriminate natural variability and oil seep emissions from antropic disturbances. Therefore, preliminary risk analyses relied on seasonal and historical records. Two years of field observations revealed subtle environmental changes in the studied area attributed to antropic disturbances. Waters maintained oligotrophic conditions and zooplankton and benthic infaunal biomass were also poor. Biomarkers in sediments and biota did not exceed EPA’s benchmarks, and sediment’s fingerprinting (δ13C) indicated marine carbon sources. Geomarkers revealed an active transport from the Mississippi towards the NW GoM of phyllosilicates bearing a weathered oil coating. Consequently, shelf and slope sediment toxicity begins to show an increasing trend in the region. The complexity of hydrocarbons bioaccumulation and biodegradation processes in deep waters of the GoM seems to indicate that meso-and large-scale observations may prove to be essential in understanding the capacity of the GoM to recover its ecological stability.展开更多
The origins and logging responses of flushed zones in some blocks of Orinoco heavy oil belt, Venezuela are still unclear. To solve this issue, we examined the conventional logging, nuclear magnetic resonance logging, ...The origins and logging responses of flushed zones in some blocks of Orinoco heavy oil belt, Venezuela are still unclear. To solve this issue, we examined the conventional logging, nuclear magnetic resonance logging, fluid viscosity, core analysis and oil field production data comprehensively to find out the logging responses and origins of the flushed zones. The results show that the main reason for the formation of flushed zone is surface water invasion, which leads to crude oil densification. The crude oil densification produces asphalt membrane(asphalt crust) which wraps up free water, causing special logging responses of the flushed zones. According to the different logging responses, we classified the flushed zones into two types and analyzed the formation processes of the two types of flushed zones. According to the characteristics of logging curves after water flush, we confirmed that the water flush began earlier than the reservoir accumulation.展开更多
Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed t...Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.展开更多
The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in i...The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in its developing process. It has became a tensile ultralithospherie fraetural zone at present or in diwa residual-mobility period. Some cenozoic oil-gas-bearing basins are distributed along the fraetural zone which fomed an important oil-gas accumulating belt in the North China Ctustoblock.展开更多
基金supported by the National Natural Science Foundation of China(52034010).
文摘Residual oil zones(ROZs)have high residual oil saturation,which can be produced using CO_(2) miscible flooding.At the same time,these zones are good candidates for CO_(2) sequestration.To evaluate the coupled CO_(2)-EOR and storage perfor-mance in ROZs for Water-Alternating-CO_(2)(WAG)flooding,a multi-compositional CO_(2) miscible model with molecular diffusion was developed.The effects of formation parameters(porosity,permeability,temperature),operation parameters(bottom hole pressure,WAG ratio,pore volume of injected water),and diffusion coeffcient on the coupled CO_(2)-EOR and storage were investigated.Five points from the CO_(2) sequestration curve and the oil recovery factor curve were selected to help better analyze coupled CO_(2)-EOR and storage.The results demonstrate that enhanced performance is observed when formation permeability is higher and a larger volume of water is injected.On the other hand,the performance diminishes with increasing porosity,molecular diffusion of gas,and the WAG ratio.When the temperature is around 100℃,coupled CO_(2)-EOR and storage performance is the worst.To achieve optimal miscible flooding,it is recommended to maintain the bottom hole pressure(BHP)of the injection well above 1.2 minimum miscibility pressure(MMP),while ensuring that the BHP of the production well remains sufficiently high.Furthermore,the tapered WAG flooding strategy proves to be profitable for enhanced oil recovery,as compared to a WAG ratio of 0.5:1,although it may not be as effective for CO_(2) sequestration.
基金the support from Science&Technology Department of Sichuan Province(Grant Nos.2021ZYCD004,2022YFSY0008,2022NSFSC1023)National Natural Science Foundation of China(Grant Nos.42102300,52204033)the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University(Grant No.22003).
文摘Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs.
文摘Dried fish are susceptible to bacteria and fungi attack and are liable to chemical changes which cause losses in quality and reduction of shelf-life. It is important therefore to maintain the quality of fish because continuous consumption of contaminated fish and their products may predispose consumers to health hazards. Maintenance of high quality fish therefore calls for adequate and effective preservation techniques. The study examined the effectiveness of essential oils of Ocimum basilicum and Ocimum gratissimum from two Agro-ecological zones of Cameroon in limiting the microbial proliferation and preserving the quality of smoke-dried Oreochromis niloticus fish stored at 25˚C for two months. The plant materials were harvested from the Western Highlands and Monomodal Humid Forest agroecological zones of Cameroon. Extraction of the essential oil from the plants was done by hydro-distillation. The fish species (Oreochromis niloticus) used in this study was chosen based on a survey study on the most consumed species of freshwater smoke-dried fish in the Western Highlands and Monomodal Humid Forest Agro-ecological zones of Cameroon. Heterotrophic bacteria counts, fungi counts and Enterobacteriaceae counts were used to assess the level heterotrophic bacteria, fungi and Enterobacteriaceae respectively in the fish samples during storage and were done by culture techniques using total plate count agar, potato dextrose agar and violet red bile glucose agar respectively. Total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance assays were used as spoilage indices to assess the nutritional quality of the fish during storage. From the survey study, Oreochromis niloticus was the most consumed smoke-dried fish in the Western Highlands (35.45%) and Monomodal Humid Forest (34.55%) agroecological zones. All the EOs caused a significant reduction in the microbial loads, total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance of smoke-dried Oreochromis niloticus as storage progressed. However, the reduction in these values was more pronounced in samples treated with essential oils of O. gratissimum from the Western Highlands, with heterotrophic bacteria, fungi and Enterobacteriaceae counts being 5.89, 6.97 and 4.59 log<sub>10</sub> cfu/g respectively at the end of the storage period. This was followed by essential oils of O. gratissimum from the Monomodal Humid Forest with heterotrophic bacteria, fungi and Enterobacteriaceae counts being 6.11, 7.79 and 4.86 log<sub>10</sub> cfu/g respectively at the end of the storage period. Also, essential oils of O. gratissimum from the Western Highlands was more effective in preserving the fish quality as lowest total volatile basic nitrogen (12.29 mg/100g), peroxide value (2.79 mEq O<sub>2</sub>·Kg<sup>−1</sup>) and thiobabituric reactive substance (1.695 mg MDA/Kg) values were observed for fish samples treated with this extract at the end of the storage period. This was followed by essential oils of O. gratissimum from the Monomodal Humid Forest with total volatile basic nitrogen (14.95 mgN/100g), Peroxide value (3.23 mEq O<sub>2</sub>·Kg<sup>−1</sup>) and thiobabituric reactive substance (2.354 mg MDA/Kg) at the end of the storage period. From the results obtained, essential oils from O. gratissimum were more effective than that from O. basilicum in the two agroecological zones and should be considered as natural alternative to chemical preservatives for further application in food preservation.
文摘The reservoirs in the N oilfield in Sudan feature a complex sedimentary environment,which has led to a widespread development of low-resistivity oil zones,accounting for as high as 37%of the total oil zones.In this case,a large number of oil zones will be misinterpreted using conventional methods.Based on the analysis of the core data and logging curves of the study area,this study concludes that the lowresistivity oil zones are formed mainly due to the high irreducible water saturation caused by the high content of illite and smectite and complex pore structure,the additional electrical conductivity induced by clay minerals,and the difference in formation water salinity between the oil zones and water zones.Furthermore,four methods are proposed to qualitatively identify these oil zones and water zones,namely the relationship analysis of five reservoir properties,cross-plotting of sensitive parameters,analysis of pressure testing data,and multi-well correlation.Furthermore,the study quantitatively calculates the initial oil saturation using the capillary pressure data,thus avoiding the conventional empirical saturation formulas depending on electrical resistivity and solving the difficulty in calculating oil saturation of low-resistivity oil zones.Finally,precise logging processing and interpretation of 95 wells in the study area are conducted using the above-mentioned comprehensive assessment system for low-resistivity oil zones.As a result,59 oil zones are newly discovered in 43 wells.Moreover,it is recommended that 17 oil zones in 12 wells should be tested,of which 11 oil zones have been tested as recommended,all proven to be high production oil zones after perforation.The coincidence rate of logging interpretation increases from 75%to 94.3%,and the original oil in place(OOIP)increases by 57.42 million barrels.All these indicate that the assessment system proposed is suitable for low-resistivity zones.
文摘Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still under-developed. Based on the geology and logging analysis, we redefine low-resistivity oil zones. According to their genesis, low-resis- tivity oil zones can be distinguished as five different classes: low-resistivity oil zones formed by tectonic settings, by depositional settings, by diagenetic settings, by invaded settings and those which are formed by the compounding geneses respectively. We make the following observations from this study on the definition and classification of low-resistivity oil zones: 1) A low-resistivity oil reservoir has macroscopic and microscopic unity. 2) The genesis of low-resistivity oil zones varies with the type of petroliferous basin. 3) Some low-resistivity oil zones can be forecasted based on the geological study results. 4) The results in this paper suggest that well logging information is generated from two cause mechanisms, the geophysical factors and the geological setting. Future studies on the geological background cause mechanism and the theory of well logging information will enrich the theory of logging geology and improve the ability to forecast oil zones.
基金Project(41272122)supported by the National Natural Science Foundation of China
文摘The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.
基金Supported by the National Key Research and Development Program of China(2018YFE0196000)National Science and Technology Major Project of China(2016ZX05010-006)CNPC Scientific Research and Technical Development Project(2019B-4113)
文摘This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.
基金Supported by the National Natural Science Foundation of China(U22B6004)the PetroChina Research Institute of Petroleum Exploration&Development Project(2022yjcq03).
文摘The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.
文摘The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capacity of the pelagic and benthic realms of this Large Marine Ecosystem. Many are the ecological services provided by its waters (fisheries, tourism, aquaculture and fossil fuel reserves) to neighboring countries (US, Mexico and Cuba). However, the unprecedented volumes of hydrocarbons, gas and chemical dispersants (Corexit) introduced in the system, represent ecological stressors whose deleterious effects are still the subject of civil claims and scientific controversy. Presumably, the short scale effects were confined to the Gulf’s northeastern shallow waters, and the combined actions of weathering, biodegradation, and oil recovery left the system almost under pre-spill conditions. Unfortunately, surface and subsurface oil plumes were detected in the spill aftermath, and their dispersion trajectories threatened Mexico EEZ. Surface oil slicks were detected in the pristine waters of northern Yucatán, while subsurface oil plumes from the Macondo’s well blowout were dangerously advancing southwest towards key fishing grounds in the northwestern GoM. This disaster prompted the Mexican government to implement an ambitious ocean monitoring program adopting a bottom-up approach focused on building a base line for more than 42 physicochemical and biological variables for water, sediment and biota from the continental shelf-slope region of the NW GoM. Technological constraints have precluded systematic observations in the vast Mexican EEZ that could discriminate natural variability and oil seep emissions from antropic disturbances. Therefore, preliminary risk analyses relied on seasonal and historical records. Two years of field observations revealed subtle environmental changes in the studied area attributed to antropic disturbances. Waters maintained oligotrophic conditions and zooplankton and benthic infaunal biomass were also poor. Biomarkers in sediments and biota did not exceed EPA’s benchmarks, and sediment’s fingerprinting (δ13C) indicated marine carbon sources. Geomarkers revealed an active transport from the Mississippi towards the NW GoM of phyllosilicates bearing a weathered oil coating. Consequently, shelf and slope sediment toxicity begins to show an increasing trend in the region. The complexity of hydrocarbons bioaccumulation and biodegradation processes in deep waters of the GoM seems to indicate that meso-and large-scale observations may prove to be essential in understanding the capacity of the GoM to recover its ecological stability.
基金Supported by the China Major National Oil&Gas Project(2016ZX05031-001)
文摘The origins and logging responses of flushed zones in some blocks of Orinoco heavy oil belt, Venezuela are still unclear. To solve this issue, we examined the conventional logging, nuclear magnetic resonance logging, fluid viscosity, core analysis and oil field production data comprehensively to find out the logging responses and origins of the flushed zones. The results show that the main reason for the formation of flushed zone is surface water invasion, which leads to crude oil densification. The crude oil densification produces asphalt membrane(asphalt crust) which wraps up free water, causing special logging responses of the flushed zones. According to the different logging responses, we classified the flushed zones into two types and analyzed the formation processes of the two types of flushed zones. According to the characteristics of logging curves after water flush, we confirmed that the water flush began earlier than the reservoir accumulation.
基金Major Project of National Natural Science Foundation of China(42090020,42090025)Major Project of CNPC(2019E-2601)。
文摘Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.
文摘The Lankao-Liaocheng Fractural Zone is a large-seade NNE-trending struetural zone in the North China Crustoblock. Dated from the Late Arehean-Early Proterozoie, it is stil1 active now. Its nature varied with time in its developing process. It has became a tensile ultralithospherie fraetural zone at present or in diwa residual-mobility period. Some cenozoic oil-gas-bearing basins are distributed along the fraetural zone which fomed an important oil-gas accumulating belt in the North China Ctustoblock.