To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bea...To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bearing is built with consideration of variable viscosity. The pressure field in the clearance oil film of the hydrostatic bearing at various velocities is simulated based on the Finite Volume Method (FVM) by using the software of Computational Fluid Dynamics (CFD). Some pressure experiments on the hydrostatic bearing were carried out and the results verified the rationality of the simplified model of the pad and the validity of the numerical simulation. It is concluded that the viscosity has a great influence on the pressure in the heavy hydrostatic bearing and cannot be neglected, especially, in cases of high rotating speed. The results of numerical calculations provide the internal flow states inside the bearing, which would help the design of the oil cavity structure of the bearing in engineering practice.展开更多
The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake p...The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake pads can be replaced by natural fibers like Palm kernel (0-50%), Nile roses (0-15%) and Wheat (0-10%) with additives like aluminum oxide (5%-20%) and graphite powder (10%-35%). Phenolic resin of 35% is utilized as a binder. Particulated Nile roses are used to increase the friction coefficient and wheat powder is used to reduce the wear rate. Aluminum oxide and graphite are abrasive in nature. This helps to make brake pads with high friction co-efficient and less wear rate with low noise pollution. The wear of the proposed composites have been investigated at different speeds. Various tests like wear on pin-ondisc apparatus, hardness on the Rockwell hardness apparatus and oil absorption test have been conducted. Phenolic resin produces good bonding nature to fiber. Thus, Fibers found to have performed palatably among all commercial brake pads. The objective of the research indicates that Palm kernal shell could be a conceivable alternative for asbestos in friction coating materials.展开更多
基金supported by the National Natural Science Funds for Young Scholar of China(Grant No.51005063)the Heilongjiang Postdoctoral Science-Research Foundation(GrantLBH-Q12062)the National Natural Science Foundation of China(Grant No.51075106)
文摘To study the heavy hydrostatic bearing with multiple oil pads, a reasonably simplified model of the pad is put forward, and the mathematical model of the bearing characteristics of the multiple oil pad hydrostatic bearing is built with consideration of variable viscosity. The pressure field in the clearance oil film of the hydrostatic bearing at various velocities is simulated based on the Finite Volume Method (FVM) by using the software of Computational Fluid Dynamics (CFD). Some pressure experiments on the hydrostatic bearing were carried out and the results verified the rationality of the simplified model of the pad and the validity of the numerical simulation. It is concluded that the viscosity has a great influence on the pressure in the heavy hydrostatic bearing and cannot be neglected, especially, in cases of high rotating speed. The results of numerical calculations provide the internal flow states inside the bearing, which would help the design of the oil cavity structure of the bearing in engineering practice.
文摘The use of asbestos material is being avoided to manufacture the brake pads as it is harmful and toxic in nature. Further it leads to various health issues like asbestosis, mesothelioma and lung cancers. These brake pads can be replaced by natural fibers like Palm kernel (0-50%), Nile roses (0-15%) and Wheat (0-10%) with additives like aluminum oxide (5%-20%) and graphite powder (10%-35%). Phenolic resin of 35% is utilized as a binder. Particulated Nile roses are used to increase the friction coefficient and wheat powder is used to reduce the wear rate. Aluminum oxide and graphite are abrasive in nature. This helps to make brake pads with high friction co-efficient and less wear rate with low noise pollution. The wear of the proposed composites have been investigated at different speeds. Various tests like wear on pin-ondisc apparatus, hardness on the Rockwell hardness apparatus and oil absorption test have been conducted. Phenolic resin produces good bonding nature to fiber. Thus, Fibers found to have performed palatably among all commercial brake pads. The objective of the research indicates that Palm kernal shell could be a conceivable alternative for asbestos in friction coating materials.