The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system...The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.展开更多
This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transf...This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.展开更多
This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules...This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.展开更多
Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevent...Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling展开更多
文摘The Red-Thai Binh River system is an important water resource to the Northern Delta, serving the development of agriculture, people’s livelihood and other economic sectors through its upstream reservoirs and a system of water abstraction works along the rivers. However, due to the impact of climate change and pressure from socio-economic development, the operation of the reservoir system according to Decision No. 740/QD-TTg was issued on June 17, 2019 by the Prime Minister of Government promulgating the Red-Thai Binh River system inter-reservoir operation rules (Operation rules 740) has some shortcomings that need adjustments for higher water use efficiency, meeting downstream water demand and power generation benefits. Through the results of water balance calculation and analysis of economic benefits from water use scenarios, this research proposed adjustment to the inter-reservoir operation during dry season in the Red River system. The result showed that an average water level of 1.0 - 1.7 m should be maintained at Hanoi during the increased release period.
基金supported by the National Natural Science Foundation of China(Grants No.51339004 and 71171151)
文摘This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO) algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.
文摘This paper focused on the applying stochastic dynamic programming (SDP) to reservoir operation. Based on the two stages decision procedure, we built an operation model for reservoir operation to derive operating rules. With a case study of the China’s Three Gorges Reservoir, long-term operating rules are obtained. Based on the derived operating rules, the reservoir is simulated with the inflow from 1882 to 2005, which the mean hydropower generation is 85.71 billion kWh. It is shown that the SDP works well in the reservoir operation.
基金supported by the National Natural Science Foundation of China(Grant No.51190094)the National Key Technologies Research and Development Program of China(Grant No.2009BAC56B02)
文摘Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling