期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization
1
作者 Mehrdad Shoeibi Mohammad Mehdi Sharifi Nevisi +3 位作者 Reza Salehi Diego Martín Zahra Halimi Sahba Baniasadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期3469-3493,共25页
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ... Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process. 展开更多
关键词 Hyperspectral image classification reinforcement learning multi-objective binary grey wolf optimizer band selection
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
2
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
3
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey Wolf optimization (GWO) Metaheuristic Algorithm optimization Problems Agents’ Positions Leader Wolves optimal Fitness Values optimization Challenges
下载PDF
Hybrid Dipper Throated and Grey Wolf Optimization for Feature Selection Applied to Life Benchmark Datasets 被引量:2
4
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +4 位作者 Faten Khalid Karim Mostafa Abotaleb Abdelhameed Ibrahim Abdelaziz A.Abdelhamid D.L.Elsheweikh 《Computers, Materials & Continua》 SCIE EI 2023年第2期4531-4545,共15页
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collectio... Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning.Each feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical methods.As a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this research.Instability can result when the selection of features is subject to metaheuristics,which can lead to a wide range of results.Thus,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more equitably.We propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of attributes.In the proposed method,the number of features selected is minimized,while classification accuracy is increased.To test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments. 展开更多
关键词 Metaheuristics dipper throated optimization grey wolf optimization binary optimizer feature selection
下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:11
5
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue optimIZATION multiple linear regression combined predic-tion model.
下载PDF
Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems
6
作者 Reem Alkanhel Doaa Sami Khafaga +5 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Rashid Amin Mostafa Abotaleb B.M.El-den 《Computers, Materials & Continua》 SCIE EI 2023年第2期2695-2709,共15页
The Internet of Things(IoT)is a modern approach that enables connection with a wide variety of devices remotely.Due to the resource constraints and open nature of IoT nodes,the routing protocol for low power and lossy... The Internet of Things(IoT)is a modern approach that enables connection with a wide variety of devices remotely.Due to the resource constraints and open nature of IoT nodes,the routing protocol for low power and lossy(RPL)networks may be vulnerable to several routing attacks.That’s why a network intrusion detection system(NIDS)is needed to guard against routing assaults on RPL-based IoT networks.The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks.Therefore,we propose in this paper a novel approach to balance the dataset classes based on metaheuristic optimization applied to locality-sensitive hashing and synthetic minority oversampling technique(LSH-SMOTE).The proposed optimization approach is based on a new hybrid between the grey wolf and dipper throated optimization algorithms.To prove the effectiveness of the proposed approach,a set of experiments were conducted to evaluate the performance of NIDS for three cases,namely,detection without dataset balancing,detection with SMOTE balancing,and detection with the proposed optimized LSHSOMTE balancing.Experimental results showed that the proposed approach outperforms the other approaches and could boost the detection accuracy.In addition,a statistical analysis is performed to study the significance and stability of the proposed approach.The conducted experiments include seven different types of attack cases in the RPL-NIDS17 dataset.Based on the 2696 CMC,2023,vol.74,no.2 proposed approach,the achieved accuracy is(98.1%),sensitivity is(97.8%),and specificity is(98.8%). 展开更多
关键词 Metaheuristics grey wolf optimization dipper throated optimization dataset balancing locality sensitive hashing SMOTE
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
7
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
下载PDF
Enhanced Multi-Objective Grey Wolf Optimizer with Lévy Flight and Mutation Operators for Feature Selection
8
作者 Qasem Al-Tashi Tareq M Shami +9 位作者 Said Jadid Abdulkadir Emelia Akashah Patah Akhir Ayed Alwadain Hitham Alhussain Alawi Alqushaibi Helmi MD Rais Amgad Muneer Maliazurina B.Saad Jia Wu Seyedali Mirjalili 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1937-1966,共30页
The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective ... The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized.While it is a multi-objective problem,current methods tend to treat feature selection as a single-objective optimization task.This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase(LMuMOGWO)for tackling feature selection problems.The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer(MOGWO):a Lévy flight and a mutation operator.The Lévy flight,a type of random walk with jump size determined by the Lévy distribution,enhances the global search capability of MOGWO,with the objective of maximizing classification accuracy while minimizing the number of selected features.The mutation operator is integrated to add more informative features that can assist in enhancing classification accuracy.As feature selection is a binary problem,the continuous search space is converted into a binary space using the sigmoid function.To evaluate the classification performance of the selected feature subset,the proposed approach employs a wrapper-based Artificial Neural Network(ANN).The effectiveness of the LMuMOGWO is validated on 12 conventional UCI benchmark datasets and compared with two existing variants of MOGWO,BMOGWO-S(based sigmoid),BMOGWO-V(based tanh)as well as Non-dominated Sorting Genetic Algorithm II(NSGA-II)and Multi-objective Particle Swarm Optimization(BMOPSO).The results demonstrate that the proposed LMuMOGWO approach is capable of successfully evolving and improving a set of randomly generated solutions for a given optimization problem.Moreover,the proposed approach outperforms existing approaches in most cases in terms of classification error rate,feature reduction,and computational cost. 展开更多
关键词 Feature selection multi-objective optimization grey wolf optimizer Lévy flight MUTATION classification
下载PDF
Discrete GWO Optimized Data Aggregation for Reducing Transmission Rate in IoT
9
作者 S.Siamala Devi K.Venkatachalam +1 位作者 Yunyoung Nam Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1869-1880,共12页
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient ... The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient life.The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things(IoT),Wireless Sensor Networks(WSN),Embedded systems,Deep learning approaches and Optimization and aggregation methods.The data generated through these technologies will demand the bandwidth,data rate,latency of the network.In this proposed work,efficient discrete grey wolf optimization(DGWO)based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code(ECEMAC)has been used to aggregate the parameters generated from the wearable sensor devices of the patient.The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO.Aggregation scheme will reduce the number of transmissions over the network.The aggregated data are preprocessed at edge node to remove the noise for better diagnosis.Edge node will reduce the overhead of cloud server.The aggregated data are forward to cloud server for central storage and diagnosis.This proposed smart diagnosis will reduce the transmission cost through aggrega-tion scheme which will reduce the energy of the system.Energy cost for proposed system for 300 nodes is 0.34μJ.Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme(SPPDA),concealed data aggregation scheme for multiple application(CDAMA)and secure aggregation scheme(ASAS)are 1.3μJ,0.81μJ and 0.51μJ respectively.The optimization approaches and encryption method will ensure the data privacy. 展开更多
关键词 Discrete grey wolf optimization data aggregation cloud computing IOT WSN smart healthcare elliptic curve elgamal energy optimization
下载PDF
Grey Wolf Optimizer Based Deep Learning for Pancreatic Nodule Detection
10
作者 T.Thanya S.Wilfred Franklin 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期97-112,共16页
At an early point,the diagnosis of pancreatic cancer is mediocre,since the radiologist is skill deficient.Serious threats have been posed due to the above reasons,hence became mandatory for the need of skilled technici... At an early point,the diagnosis of pancreatic cancer is mediocre,since the radiologist is skill deficient.Serious threats have been posed due to the above reasons,hence became mandatory for the need of skilled technicians.However,it also became a time-consuming process.Hence the need for automated diagnosis became mandatory.In order to identify the tumor accurately,this research pro-poses a novel Convolution Neural Network(CNN)based superior image classi-fication technique.The proposed deep learning classification strategy has a precision of 97.7%,allowing for more effective usage of the automatically exe-cuted feature extraction technique to diagnose cancer cells.Comparative analysis with CNN-Grey Wolf Optimization(GWO)is carried based on varied testing and training outcomes.The suggested study is carried out at a rate of 90%–10%,80%–20%,and 70%–30%,indicating the robustness of the proposed research work.Outcomes show that the suggested method is effective.GWO-CNN is reli-able and accurate relative to other detection methods available in the literatures. 展开更多
关键词 Convolution neural network deep learning technique feature extraction grey wolf optimizer
下载PDF
Recognizing Ancient South Indian Language Using Opposition Based Grey Wolf Optimization
11
作者 A.Naresh Kumar G.Geetha 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2619-2637,共19页
Recognizing signs and fonts of prehistoric language is a fairly difficult job that requires special tools.This stipulation make the dispensation period over-riding,difficult and tiresome to calculate.This paper present ... Recognizing signs and fonts of prehistoric language is a fairly difficult job that requires special tools.This stipulation make the dispensation period over-riding,difficult and tiresome to calculate.This paper present a technique for recognizing ancient south Indian languages by applying Artificial Neural Network(ANN)associated with Opposition based Grey Wolf Optimization Algorithm(OGWA).It identifies the prehistoric language,signs and fonts.It is an apparent from the ANN system that arbitrarily produced weights or neurons linking various layers play a significant role in its performance.For adaptively determining these weights,this paper applies various optimization algorithms such as Opposition based Grey Wolf Optimization,Particle Swarm Optimization and Grey Wolf Opti-mization to the ANN system.Performance results are illustrated that the proposed ANN-OGWO technique achieves superior accuracy over the other techniques.In test case 1,the accuracy value of OGWO is 94.89%and in test case 2,the accu-racy value of OGWO is 92.34%,on average,the accuracy of OGWO achieves 5.8%greater accuracy than ANN-GWO,10.1%greater accuracy than ANN-PSO and 22.1%greater accuracy over conventional ANN technique. 展开更多
关键词 Ancient language symbols CHARACTERS artificial neural network opposition based grey wolf optimization
下载PDF
Optimization Strategy for Passive Form Design of Architectural Grey Space under the Background of Climate Adaptability
12
作者 QI Zizhuo YANG Xin 《Journal of Landscape Research》 2023年第3期1-5,12,共6页
Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey spac... Taking the bottom grey space with great influence on outdoor thermal comfort as the research object,this paper summarizes the morphological characteristics and climate response methods of two types of bottom grey space:overhead grey space and canopy grey space.The spatial form indexes that greatly affect the ecological performance of architectural grey space such as ventilation,shading,etc.are discussed,and two passive spatial form indexes of spatial scale and location orientation are studied.According to the research of related scholars and literature summary,the optimization strategies for passive form design of architectural grey space based on climate adaptability are put forward,which will provide a reference for the climate adaptive design of architectural grey space,and helps to improve the outdoor thermal environment from the micro scale and create a better living environment. 展开更多
关键词 Architectural grey space Passive design Climate adaptability Morphological optimization
下载PDF
A hybrid machine learning optimization algorithm for multivariable pore pressure prediction
13
作者 Song Deng Hao-Yu Pan +8 位作者 Hai-Ge Wang Shou-Kun Xu Xiao-Peng Yan Chao-Wei Li Ming-Guo Peng Hao-Ping Peng Lin Shi Meng Cui Fei Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期535-550,共16页
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f... Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure. 展开更多
关键词 Pore pressure grey wolf optimization Multilayer perceptron Effective stress Machine learning
下载PDF
A New Modified GM (1,1) Model: Grey Optimization Model 被引量:12
14
作者 Xiao Xinping College of Scienced, Wuhan University of Technologyl 430063, P R. China Deng Julong Dept. of Control, Huazhong University of Science and Technology, Wuhan 430074,P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期1-5,共5页
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
关键词 GM (1 1) grey optimization model optimization method.
下载PDF
Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis 被引量:5
15
作者 Prakash Kumar Sahu Sukhomay Pal 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期36-46,共11页
The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis(GRA).The considered process pa... The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis(GRA).The considered process parameters are welding speed,tool rotation speed,shoulder diameter and plunging depth.The experiments were carried out by using Taguchi's L18 factorial design of experiment.The processes parameters were optimized and ranked the parameters based on the GRA.The percentage influence of each process parameter on the weld quality was also quantified.A validation experimental run was conducted using optimal process condition,which was obtained from the analysis,to show the improvement in mechanical properties of the joint.This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy. 展开更多
关键词 Friction stir welding Magnesium alloy Tensile strength Bending strength Micro-hardness optimIZATION Taguchi grey relational analysis
下载PDF
Lifetime prediction for tantalum capacitors with multiple degradation measures and particle swarm optimization based grey model 被引量:2
16
作者 黄姣英 高成 +1 位作者 崔嵬 梅亮 《Journal of Central South University》 SCIE EI CAS 2012年第5期1302-1310,共9页
A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter mode... A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate. 展开更多
关键词 accelerated degradation test CAPACITOR multiple degradation measure particle swarm optimization grey model
下载PDF
Grey Wolf Optimization Based Tuning of Terminal Sliding Mode Controllers for a Quadrotor 被引量:2
17
作者 Rabii Fessi Hegazy Rezk Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第8期2265-2282,共18页
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O... The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities. 展开更多
关键词 QUADROTOR cascade control fast terminal sliding mode control grey wolf optimizer nonparametric Friedman analysis
下载PDF
Optimization approach hydroforming car beam billets based grey system theory 被引量:1
18
作者 吴耀金 薛勇 段江年 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期48-53,共6页
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a... Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams. 展开更多
关键词 car beam HYDROFORMING BILLET grey system theory multi objective optimization
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
19
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(GWO)
下载PDF
Feature Selection Using Grey Wolf Optimization with Random Differential Grouping 被引量:1
20
作者 R.S.Latha B.Saravana Balaji +3 位作者 Nebojsa Bacanin Ivana Strumberger Miodrag Zivkovic Milos Kabiljo 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期317-332,共16页
Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the in... Big data are regarded as a tremendous technology for processing a huge variety of data in a short time and with a large storage capacity.The user’s access over the internet creates massive data processing over the internet.Big data require an intelligent feature selection model by addressing huge varieties of data.Traditional feature selection techniques are only applicable to simple data mining.Intelligent techniques are needed in big data processing and machine learning for an efficient classification.Major feature selection algorithms read the input features as they are.Then,the features are preprocessed and classified.Here,an algorithm does not consider the relatedness.During feature selection,all features are misread as outputs.Accordingly,a less optimal solution is achieved.In our proposed research,we focus on the feature selection by using supervised learning techniques called grey wolf optimization(GWO)with decomposed random differential grouping(DrnDG-GWO).First,decomposition of features into subsets based on relatedness in variables is performed.Random differential grouping is performed using a fitness value of two variables.Now,every subset is regarded as a population in GWO techniques.The combination of supervised machine learning with swarm intelligence techniques produces best feature optimization results in this research.Once the features are optimized,we classify using advanced kNN process for accurate data classification.The result of DrnDGGWO is compared with those of the standard GWO and GWO with PSO for feature selection to compare the efficiency of the proposed algorithm.The accuracy and time complexity of the proposed algorithm are 98%and 5 s,which are better than the existing techniques. 展开更多
关键词 Feature selection data optimization supervised learning swarm intelligence decomposed random differential grouping grey wolf optimization
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部