Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the e...Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.展开更多
A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed....A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed.Then,the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation.It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately.Power control implementation is simple,as only the voltage and current of the generator need to be measured.展开更多
An iterative optimization strategy is proposed and applied to the steady state optimizing control of the bio-dissimilation process of glycerol to 1,3-propanediol in the presence of model-plant mismatch and input const...An iterative optimization strategy is proposed and applied to the steady state optimizing control of the bio-dissimilation process of glycerol to 1,3-propanediol in the presence of model-plant mismatch and input constraints. The scheme is based on the Augmented Integrated System Optimization and Parameter Estimation (AI- SOPE) technique, but a linearization of some performance function in the modified model-based optimization problem of AISOPE is introduced to overcome the difficulty of determining an appropriate penalty parameter. When carrying out the iterative optimization, the penalty coefficient is set to a larger value at the current iteration than at the previous iteration, which can promote the evolution rate of the iterative optimization. Simulation studies illustrate the potential ofthe approach presented for the optimizing control of the bioTdissimilation process of glycerol to 1,3-propanediol. The effects of measurement noise, measured and unmeasured disturbances on the proposed algorithm are also investigated.展开更多
Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task o...Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.展开更多
In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of ...In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.展开更多
The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built ...The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction effect of the MRF damper.Based on the numerical simulation analysis,an optimizing control strategy using pattern search method was proposed and designed.The control system was constructed on a test rotor bench and experiment validations on the effectiveness of the proposed control strategy were conducted.Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region(70%)or in non-resonance region(30%).An irregular vibration amplitude jump can be suppressed with the optimization strategy.Furthermore,it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step.The presented strategies and control system can be extended to multi-span(more than two or three spans)rotor system.It provides a powerful technical support for the extension and application in target and control for shafting vibration.展开更多
Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online d...Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online detection of ash content of products as the operation performance evaluation in the flotation system is extraordinarily difficult because of the low solid content and numerous micro-bubbles in the slurry. Moreover, it is time-consuming by manual analysis. Consequently, the optimal separation is not usually maintained. A novel technique, called the neuro-immune algorithm (NIA) inspired by the biological nervous and immune systems, is presented in this paper for predicting the ash content of clean coal and performing the optimizing control to the coal flotation system. The proposed algorithm integrates the deeply-studied artificial neural network (ANN) and the developing artificial immune system (AIS). A two-layer back-propagation network was constructed offline based on the historical process data under the best system situation, using five parameters: the flow and the density of raw slurry, the input flows of water, the kerosene and the GF oil, as the inputs and the ash content of clean coal as the output. The immune cell of AIS is made up of six parameters above as the antigen. The cytokine based clone selection algorithm is used to produce the relative antibody. The detailed computation procedures about the hybrid neuro-immune algorithm are minutely discussed. The ash content of clean coal was predicted by NIA using the practical process data s: (308.6 174.7 146.1 43.6 4.0 9.4), and the absolute difference between the actual and computed ash content values was 0.0967%. The optimizing control on NIA was simulated considering two different situations where the ash content of clean coal was controlled downward from 10.00% or upward from 9.20% predicted by ANN to the target value 9.50%. The results indicate that the target ash content and the value of controlling parameters are obtained after several control cycles.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advance...Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advanced. In order to realize the new idea, a new method toon-line test active clay and moisture of green sand - double powers energizing alternately (DPEA)method is put forwards. The principle of the new method is to energize standard sand sample with ACand DC powers and to test the electric parameters, and then, to calculate active clay and moistureof green sand by using artificial neural network (ANN). Based on this new method, a directoptimizing system for controlling green sand quality is developed. Techniques about testing andcontrolling methods, hardware and software are discussed.展开更多
We introduce the predictive control theory into predictive control algorithm based on a neural network model the study of chaos control and propose a direct optimizing The proposed control system stabilizes the chaot...We introduce the predictive control theory into predictive control algorithm based on a neural network model the study of chaos control and propose a direct optimizing The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. Compared with the existing similar algorithms, the proposed control system has faster response, so it requires much shorter time for the stabilization of the chaotic systems. The proposed approach can control hyperchaos and the algorithm is simple. The convergence of the control algorithm and the stability of the control system can be guaranteed. The theoretic analysis and simulations demonstrate the effectiveness of the algorithm.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co...To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to a...A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
A new approach for assessing and optimizing software project process based on software risk control presented, which evaluates and optimizes software project process from the view of controlling the software project r...A new approach for assessing and optimizing software project process based on software risk control presented, which evaluates and optimizes software project process from the view of controlling the software project risks. A model for optimizing software risk control is given, a discrete optimization algorithm based on dynamic programruing is proposed and an example of using above method to solve a problem is also included in this paper. By improving the old passive post-project control into an active effective preaction, this new method can greatly promote the possibility of success of software projects.展开更多
This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-trigger...This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.展开更多
This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbance...This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbances makes PTC synthesis nontrivial. In this work, a control method that does not involve infinite time-varying gain is proposed, leading to a practical and global prescribed time tracking control solution for the strict-feedback systems, in spite of both the mismatched and nonvanishing uncertainties. Different from methods based on control switching to avoid the issue of infinite control gain that involves control discontinuity at the switching point, in our method a softening unit is exclusively included to ensure the continuity of the control action. Furthermore, in contrast to most existing prescribed-time control works where the control scheme is only valid on a finite time interval, in this work, the proposed control scheme is valid on the entire time interval. In addition, the prior information on the upper or lower bound of gi is not in need,enlarging the applicability of the proposed method. Both the theoretical analysis and numerical simulation confirm the effectiveness of the proposed control algorithm.展开更多
文摘Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.
文摘A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants.In particular,the factors that produce yaw static deviation are analyzed.Then,the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation.It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately.Power control implementation is simple,as only the voltage and current of the generator need to be measured.
基金the State Science and Technology Project of China (No.2001BA204B01).
文摘An iterative optimization strategy is proposed and applied to the steady state optimizing control of the bio-dissimilation process of glycerol to 1,3-propanediol in the presence of model-plant mismatch and input constraints. The scheme is based on the Augmented Integrated System Optimization and Parameter Estimation (AI- SOPE) technique, but a linearization of some performance function in the modified model-based optimization problem of AISOPE is introduced to overcome the difficulty of determining an appropriate penalty parameter. When carrying out the iterative optimization, the penalty coefficient is set to a larger value at the current iteration than at the previous iteration, which can promote the evolution rate of the iterative optimization. Simulation studies illustrate the potential ofthe approach presented for the optimizing control of the bioTdissimilation process of glycerol to 1,3-propanediol. The effects of measurement noise, measured and unmeasured disturbances on the proposed algorithm are also investigated.
文摘Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.
基金partially supported by National Natura Science Foundation of China (62350710214, U23A20325)Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)。
文摘In this tutorial paper, we explore the field of quantized feedback control, which has gained significant attention due to the growing prevalence of networked control systems. These systems require the transmission of feedback information, such as measurements and control signals, over digital networks, presenting novel challenges in estimation and control design. Our examination encompasses various topics, including the minimal information needed for effective feedback control, the design of quantizers, strategies for quantized control design and estimation,achieving consensus control with quantized data, and the pursuit of high-precision tracking using quantized measurements.
基金Supported by the National Program on Key Basic Research Program(″973″Program)(2012CB026000)the Ph.D.Programs Foundation of Ministry of Education of China(20110010110009)
文摘The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid(MRF)damper.A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction effect of the MRF damper.Based on the numerical simulation analysis,an optimizing control strategy using pattern search method was proposed and designed.The control system was constructed on a test rotor bench and experiment validations on the effectiveness of the proposed control strategy were conducted.Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region(70%)or in non-resonance region(30%).An irregular vibration amplitude jump can be suppressed with the optimization strategy.Furthermore,it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step.The presented strategies and control system can be extended to multi-span(more than two or three spans)rotor system.It provides a powerful technical support for the extension and application in target and control for shafting vibration.
基金the financial support from the Fundamental Research Funds for the Central universities of China (No. 2009KH07)
文摘Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online detection of ash content of products as the operation performance evaluation in the flotation system is extraordinarily difficult because of the low solid content and numerous micro-bubbles in the slurry. Moreover, it is time-consuming by manual analysis. Consequently, the optimal separation is not usually maintained. A novel technique, called the neuro-immune algorithm (NIA) inspired by the biological nervous and immune systems, is presented in this paper for predicting the ash content of clean coal and performing the optimizing control to the coal flotation system. The proposed algorithm integrates the deeply-studied artificial neural network (ANN) and the developing artificial immune system (AIS). A two-layer back-propagation network was constructed offline based on the historical process data under the best system situation, using five parameters: the flow and the density of raw slurry, the input flows of water, the kerosene and the GF oil, as the inputs and the ash content of clean coal as the output. The immune cell of AIS is made up of six parameters above as the antigen. The cytokine based clone selection algorithm is used to produce the relative antibody. The detailed computation procedures about the hybrid neuro-immune algorithm are minutely discussed. The ash content of clean coal was predicted by NIA using the practical process data s: (308.6 174.7 146.1 43.6 4.0 9.4), and the absolute difference between the actual and computed ash content values was 0.0967%. The optimizing control on NIA was simulated considering two different situations where the ash content of clean coal was controlled downward from 10.00% or upward from 9.20% predicted by ANN to the target value 9.50%. The results indicate that the target ash content and the value of controlling parameters are obtained after several control cycles.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金Provincial Outstanding Youth Foundation of Heilongjiang, China.
文摘Green sand casting is still a main method in the world at present and it isvery significant to develop the technology of controlling green sand quality. A new concept, fromcontents test to contents control, is advanced. In order to realize the new idea, a new method toon-line test active clay and moisture of green sand - double powers energizing alternately (DPEA)method is put forwards. The principle of the new method is to energize standard sand sample with ACand DC powers and to test the electric parameters, and then, to calculate active clay and moistureof green sand by using artificial neural network (ANN). Based on this new method, a directoptimizing system for controlling green sand quality is developed. Techniques about testing andcontrolling methods, hardware and software are discussed.
基金The project supported by the Scientific Research Project of Hebei Province of China underGrant No. 032135112
文摘We introduce the predictive control theory into predictive control algorithm based on a neural network model the study of chaos control and propose a direct optimizing The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. Compared with the existing similar algorithms, the proposed control system has faster response, so it requires much shorter time for the stabilization of the chaotic systems. The proposed approach can control hyperchaos and the algorithm is simple. The convergence of the control algorithm and the stability of the control system can be guaranteed. The theoretic analysis and simulations demonstrate the effectiveness of the algorithm.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金supported in part by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Supported by the National Program on Key Basic Research Project(973Program)(2012CB026000)Ph.D Programs Foundation of Ministry of Education of China(20110010110009)
文摘A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金Supported bythe Plan of New Technology Projectsin China National Packaging Corporation2005 (05ZBJA011)the Na-tional Natural Science Foundation of China (60373062) National Sci-ence Foundation of Hunan Province(04JJ3052)
文摘A new approach for assessing and optimizing software project process based on software risk control presented, which evaluates and optimizes software project process from the view of controlling the software project risks. A model for optimizing software risk control is given, a discrete optimization algorithm based on dynamic programruing is proposed and an example of using above method to solve a problem is also included in this paper. By improving the old passive post-project control into an active effective preaction, this new method can greatly promote the possibility of success of software projects.
基金the Research Grants Council of Hong Kong(CityU 21208921)the Chow Sang Sang Group Research Fund Sponsored by Chow Sang Sang Holdings International Ltd.
文摘This paper proposes a novel event-driven encrypted control framework for linear networked control systems(NCSs),which relies on two modified uniform quantization policies,the Paillier cryptosystem,and an event-triggered strategy.Due to the fact that only integers can work in the Pailler cryptosystem,both the real-valued control gain and system state need to be first quantized before encryption.This is dramatically different from the existing quantized control methods,where only the quantization of a single value,e.g.,the control input or the system state,is considered.To handle this issue,static and dynamic quantization policies are presented,which achieve the desired integer conversions and guarantee asymptotic convergence of the quantized system state to the equilibrium.Then,the quantized system state is encrypted and sent to the controller when the triggering condition,specified by a state-based event-triggered strategy,is satisfied.By doing so,not only the security and confidentiality of data transmitted over the communication network are protected,but also the ciphertext expansion phenomenon can be relieved.Additionally,by tactfully designing the quantization sensitivities and triggering error,the proposed event-driven encrypted control framework ensures the asymptotic stability of the overall closedloop system.Finally,a simulation example of the secure motion control for an inverted pendulum cart system is presented to evaluate the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China (61991400, 61991403, 62273064, 62250710167,61860206008, 61933012, 62203078)in part by the National Key Research and Development Program of China (2022YFB4701400/4701401)+1 种基金the Innovation Support Program for International Students Returning to China(cx2022016)the CAAI-Huawei MindSpore Open Fund。
文摘This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbances makes PTC synthesis nontrivial. In this work, a control method that does not involve infinite time-varying gain is proposed, leading to a practical and global prescribed time tracking control solution for the strict-feedback systems, in spite of both the mismatched and nonvanishing uncertainties. Different from methods based on control switching to avoid the issue of infinite control gain that involves control discontinuity at the switching point, in our method a softening unit is exclusively included to ensure the continuity of the control action. Furthermore, in contrast to most existing prescribed-time control works where the control scheme is only valid on a finite time interval, in this work, the proposed control scheme is valid on the entire time interval. In addition, the prior information on the upper or lower bound of gi is not in need,enlarging the applicability of the proposed method. Both the theoretical analysis and numerical simulation confirm the effectiveness of the proposed control algorithm.