The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the ...The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.展开更多
Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model o...Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model of seismic exploration, the study provides the objective judgment for the exploration of organic reef reservoir in gentle slope of rift basin.展开更多
The Tazhong reef-fiat oil-gas field is the first large-scale Ordovician organic reef type oil-gas field found in China. Its organic reefs were developed in the early Late Ordovician Lianglitag Formation, and are the f...The Tazhong reef-fiat oil-gas field is the first large-scale Ordovician organic reef type oil-gas field found in China. Its organic reefs were developed in the early Late Ordovician Lianglitag Formation, and are the first large reefs of the coral-stromatoporoid hermatypic community found in China. The organic reefs and platform-margin grain banks constitute a reef-flat complex, mainly consisting of biolithites and grainstones. The biolithites can be classified into the framestone, baffiestone, bindstone etc. The main body of the complex lies around the wells from Tazhong-24 to Tazhong-82, trending northwest, with the thickness from 100 to 300 m, length about 220 km and width 5-10 km. It is a reef-flat lithologic hydrocarbon reservoir, with a very complex hydrocarbon distribution: being a gas condensate reservoir as a whole with local oil reservoirs. The hydrocarbon distribution is controlled by the reef complex, generally located in the upper 100-200 m part of the complex, and largely in a banded shape along the complex. On the profile, the reservoir shows a stratified feature, with an altitude difference of almost 2200 m from southeast to northwest. The petroleum accumulation is controlled by karst reservoir beds and the northeast strike-slip fault belt. The total geologic reserves had reached 297.667 Mt by 2007.展开更多
Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, tw...Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and (210) ~Pb activities, grain size parameters, total organic carbon(TOC), total nitrogen(TN), total inorganic carbon(TIC) and stable carbon isotopes(δ^(13)C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial(higher plants, soils) and marine sources(phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.展开更多
By the end of 2019,more than 220 gas fields had been discovered in the South China Sea.In order to accurately determine the geological characteristics of the large-and medium-sized gas fields in the South China Sea,th...By the end of 2019,more than 220 gas fields had been discovered in the South China Sea.In order to accurately determine the geological characteristics of the large-and medium-sized gas fields in the South China Sea,this study conducted a comprehensive examination of the gas fields.Based on the abundant available geologic and geochemical data,the distribution and key controlling factors of the hydrocarbon accumulation in the South China Sea were analyzed.The geological and geochemical features of the gas fields were as follows:(1)the gas fields were distributed similar to beads in the shape of a"C"along the northern,western,and southern continental margins;(2)the natural gas in the region was determined to be composed of higher amounts of alkane gas and less CO2;(3)the majority of the alkane gas was observed to be coal-type gas;(4)the gas reservoir types included structural reservoirs,lithologic reservoirs,and stratigraphic reservoirs,respectively;(5)the reservoir ages were mainly Oligocene,Miocene,and Pliocene,while the lithology was mainly organic reef,with some sandstone deposits;and(6)the main hydrocarbon accumulation period for the region was determined to be the late Pliocene-Quaternary Period.In addition,the main controlling factors of the gas reservoirs were confirmed to have been the development of coal measures,sufficient thermal evolution,and favorable migration and accumulation conditions.展开更多
Based on regional geology,2D seismic and ocean drilling data,the formation of the Eratosthenes Seamount(ESM)and its surrounding isolated platforms,types of organic reefs and hydrocarbon accumulation conditions in the ...Based on regional geology,2D seismic and ocean drilling data,the formation of the Eratosthenes Seamount(ESM)and its surrounding isolated platforms,types of organic reefs and hydrocarbon accumulation conditions in the eastern Mediterranean were analyzed through fine tectonic interpretation and seismic facies study,and the future exploration targets were pointed out.The formation and evolution of the ESM and its peripheral isolated platforms are highly related to the open and close of the Neotethyan ocean.The precursors of the ESM and its peripheral isolated platforms are both horst-type fault blocks formed in the Middle Triassic-Early Jurassic intracontinental rift stage.The ESM and its peripheral isolated platforms underwent continued and inherited carbonate build-ups during the Middle Jurassic intercontinental rift stage,the Late Jurassic-Late Cretaceous Turonian passive drift stage,and Late Cretaceous Senonian-Miocene subduction stage,as well as medium-slight inversion transformation beginning in the Late Miocene Messinian caused by the closure of the Neotethyan ocean.Three types of isolated platforms formed controlled by variant paleo-tectonic settings:the first type is composed of a single patch-like reef controlled by a small-scale and narrow horst-type fault block,the second type consists of a single atoll controlled by a middle-scale and wide horst-type fault block,and the third type is comprised of multiple reef-beach complexes controlled by a large-scale and broad paleo-high.The first two types universally developed in the highs of the alternate sag-uplift structural zones on the south and west of Eratosthenes,and the third type only developed in the ESM.As a result of fluctuation of sea level,two sequences of reef build-ups,i.e.the Middle Jurassic Bajocian-Upper Cretaceous Turonian and the Miocene,developed in the ESM as well as the highs in the alternate sag-uplift structural zones on the south and west of Eratosthenes.Drillings have confirmed that the first two types of isolated platforms with a single patch-like reef and a single circle-like reef have good conditions for natural gas accumulations.The isolated platform of reef-beach complexes in the ESM also has accumulation potentials of natural gas and is worth prospecting.展开更多
Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the ig...Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the igneous rocks have become interference for future explo- ration by having similar seismic reflection characteristics. Yet, the density and magnetism of organic reefs are very different from igneous rocks. It has obvious advantages to identify organic reefs and igneous rocks by gravity and magnetic data. At first, frequency decomposition was applied to the free-air gravity anomaly in Xisha area to obtain the 2D subdivision of the gravity anomaly and magnetic anomaly in the vertical direction. Thus, the dis- tribution of igneous rocks in the horizontal direction can be acquired according to high-frequency field, low-frequency field, and its physical properties. Then, 3D forward model- ing of gravitational field was carried out to establish the density model of this area by reference to physical properties of rocks based on former researches. Furthermore, 3D inversion of gravity anomaly by genetic algorithm method of the graphic processing unit (GPU) parallel processing in Xisha target area was applied, and 3D density structure of this area was obtained. By this way, we can confine the igneous rocks to the certain depth according to the density of the igneous rocks. The frequency decomposition and 3D inversion of gravity anomaly by genetic algorithm method of the GPU parallel processing proved to be a useful method for recognizing igneous rocks to its 3D geological position. So organic reefs and igneous rocks can be identified, which provide a prescient information for further exploration.展开更多
基金supported by the National Natural Science Foundation of China(No.40972019)the S&T plan projects of Hubei Provincial Education Department(No. 03Z0105)+1 种基金the Project of Scientific and Technologic Development Planning of Jingzhou(No.20101P031-5)the Innovative Experimenting Plan of Undergraduate Students of China(No.091048934)
文摘The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.
文摘Analyzing the formation and sediment characteristics of gentle slope, the authors elaborate formation mechanism of organic reef and characteristics of reservoir in gentle slope of rift basin. Using the forward model of seismic exploration, the study provides the objective judgment for the exploration of organic reef reservoir in gentle slope of rift basin.
文摘The Tazhong reef-fiat oil-gas field is the first large-scale Ordovician organic reef type oil-gas field found in China. Its organic reefs were developed in the early Late Ordovician Lianglitag Formation, and are the first large reefs of the coral-stromatoporoid hermatypic community found in China. The organic reefs and platform-margin grain banks constitute a reef-flat complex, mainly consisting of biolithites and grainstones. The biolithites can be classified into the framestone, baffiestone, bindstone etc. The main body of the complex lies around the wells from Tazhong-24 to Tazhong-82, trending northwest, with the thickness from 100 to 300 m, length about 220 km and width 5-10 km. It is a reef-flat lithologic hydrocarbon reservoir, with a very complex hydrocarbon distribution: being a gas condensate reservoir as a whole with local oil reservoirs. The hydrocarbon distribution is controlled by the reef complex, generally located in the upper 100-200 m part of the complex, and largely in a banded shape along the complex. On the profile, the reservoir shows a stratified feature, with an altitude difference of almost 2200 m from southeast to northwest. The petroleum accumulation is controlled by karst reservoir beds and the northeast strike-slip fault belt. The total geologic reserves had reached 297.667 Mt by 2007.
基金Under the auspices of National Natural Science Foundation of China(No.41530962)
文摘Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and (210) ~Pb activities, grain size parameters, total organic carbon(TOC), total nitrogen(TN), total inorganic carbon(TIC) and stable carbon isotopes(δ^(13)C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial(higher plants, soils) and marine sources(phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.
基金The National Petroleum Major Projects under contract Nos 2016ZX05026,2011ZX05025 and 2008ZX05025the National Natural Science Foundation Major Research Program of China under contract No.91528303+3 种基金the National Program on Key Basic Research Project of China(973 Program)under contract No.2009CB219400the Key Laboratory Project of Gansu Province under contract No.1309RTSA041the National Natural Science Foundation of China under contract No.41872172the SDUST Research Found under contract No.2018TDJH101
文摘By the end of 2019,more than 220 gas fields had been discovered in the South China Sea.In order to accurately determine the geological characteristics of the large-and medium-sized gas fields in the South China Sea,this study conducted a comprehensive examination of the gas fields.Based on the abundant available geologic and geochemical data,the distribution and key controlling factors of the hydrocarbon accumulation in the South China Sea were analyzed.The geological and geochemical features of the gas fields were as follows:(1)the gas fields were distributed similar to beads in the shape of a"C"along the northern,western,and southern continental margins;(2)the natural gas in the region was determined to be composed of higher amounts of alkane gas and less CO2;(3)the majority of the alkane gas was observed to be coal-type gas;(4)the gas reservoir types included structural reservoirs,lithologic reservoirs,and stratigraphic reservoirs,respectively;(5)the reservoir ages were mainly Oligocene,Miocene,and Pliocene,while the lithology was mainly organic reef,with some sandstone deposits;and(6)the main hydrocarbon accumulation period for the region was determined to be the late Pliocene-Quaternary Period.In addition,the main controlling factors of the gas reservoirs were confirmed to have been the development of coal measures,sufficient thermal evolution,and favorable migration and accumulation conditions.
基金Supported by the China National Science and Technology Major Project(2016ZX05029001)the CNPC Science and Technology Project(2019D-4310)。
文摘Based on regional geology,2D seismic and ocean drilling data,the formation of the Eratosthenes Seamount(ESM)and its surrounding isolated platforms,types of organic reefs and hydrocarbon accumulation conditions in the eastern Mediterranean were analyzed through fine tectonic interpretation and seismic facies study,and the future exploration targets were pointed out.The formation and evolution of the ESM and its peripheral isolated platforms are highly related to the open and close of the Neotethyan ocean.The precursors of the ESM and its peripheral isolated platforms are both horst-type fault blocks formed in the Middle Triassic-Early Jurassic intracontinental rift stage.The ESM and its peripheral isolated platforms underwent continued and inherited carbonate build-ups during the Middle Jurassic intercontinental rift stage,the Late Jurassic-Late Cretaceous Turonian passive drift stage,and Late Cretaceous Senonian-Miocene subduction stage,as well as medium-slight inversion transformation beginning in the Late Miocene Messinian caused by the closure of the Neotethyan ocean.Three types of isolated platforms formed controlled by variant paleo-tectonic settings:the first type is composed of a single patch-like reef controlled by a small-scale and narrow horst-type fault block,the second type consists of a single atoll controlled by a middle-scale and wide horst-type fault block,and the third type is comprised of multiple reef-beach complexes controlled by a large-scale and broad paleo-high.The first two types universally developed in the highs of the alternate sag-uplift structural zones on the south and west of Eratosthenes,and the third type only developed in the ESM.As a result of fluctuation of sea level,two sequences of reef build-ups,i.e.the Middle Jurassic Bajocian-Upper Cretaceous Turonian and the Miocene,developed in the ESM as well as the highs in the alternate sag-uplift structural zones on the south and west of Eratosthenes.Drillings have confirmed that the first two types of isolated platforms with a single patch-like reef and a single circle-like reef have good conditions for natural gas accumulations.The isolated platform of reef-beach complexes in the ESM also has accumulation potentials of natural gas and is worth prospecting.
基金financially supported by the National Natural Science Foundation of China (No.41174085)
文摘Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the igneous rocks have become interference for future explo- ration by having similar seismic reflection characteristics. Yet, the density and magnetism of organic reefs are very different from igneous rocks. It has obvious advantages to identify organic reefs and igneous rocks by gravity and magnetic data. At first, frequency decomposition was applied to the free-air gravity anomaly in Xisha area to obtain the 2D subdivision of the gravity anomaly and magnetic anomaly in the vertical direction. Thus, the dis- tribution of igneous rocks in the horizontal direction can be acquired according to high-frequency field, low-frequency field, and its physical properties. Then, 3D forward model- ing of gravitational field was carried out to establish the density model of this area by reference to physical properties of rocks based on former researches. Furthermore, 3D inversion of gravity anomaly by genetic algorithm method of the graphic processing unit (GPU) parallel processing in Xisha target area was applied, and 3D density structure of this area was obtained. By this way, we can confine the igneous rocks to the certain depth according to the density of the igneous rocks. The frequency decomposition and 3D inversion of gravity anomaly by genetic algorithm method of the GPU parallel processing proved to be a useful method for recognizing igneous rocks to its 3D geological position. So organic reefs and igneous rocks can be identified, which provide a prescient information for further exploration.