The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hy...The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hydrogenation deoxygenation,solvent extraction,and extraction distillation,adsorption deoxygenation technology has the advantages of low cost,mild operating conditions,easy removal and recovery,and mini-mal impact on oil quality.Therefore,adsorption deoxygenation technology has devel-oped rapidly in various removal processes and has become a research hotspot in the cur-rent Fischer Tropsch oil deoxygenation.Adsorbents are the core of adsorption deoxygen-ation technology.Therefore,this article briefly introduces the adsorption mechanism and summarizes the research progress of adsorbents widely used in recent years,such as silica gel,alumina,molecular sieves,and metal organic frameworks,in adsorbing oxygen-containing compounds in Fischer Tropsch synthetic oils.And provide reference sugges-tions for further adsorption and deoxygenation directions in the future.展开更多
Iron-containing zeolites play an important role in the selective oxidation of methane to oxygenates by nitrous oxide.A solid-state ion exchange method is adopted to prepare Fe-MOR zeolite catalysts with different amou...Iron-containing zeolites play an important role in the selective oxidation of methane to oxygenates by nitrous oxide.A solid-state ion exchange method is adopted to prepare Fe-MOR zeolite catalysts with different amounts of extra-framework Al.EPR spectra and UV-vis spectra show that the percentage of iron ions in tetrahedral or octahedral coordination increases while those of clustered Fe species decrease by the addition of extra-framework Al species.Nitrous oxide titration reveals that more active Fe centers are formed,which promote the nitrous oxide consumption.The number of active centers in the catalyst with the introduction of extra-framework Al is about four times that of the catalyst without the addition of extra-framework Al.Due to this,there is an increase in the methane conversion,total selectivity and yield of oxygenates.展开更多
Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,t...Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,the CAH bond of products is more reactive than that of high thermodynamic stable methane.Exploring an appropriate approach to eliminate the‘‘seesaw effect"between methane conversion and oxygenate selectivity is significant.In this review,we briefly summarize the research progress in the past decade on low-temperature direct conversion of methane to oxygenates in gas-solid-liquid phase over various transition metal(Fe,Cu,Rh,Pd,Au Pd,etc.)based nanoparticle or single-atom catalyst.Furthermore,the prospects of catalyst design and catalysis process are also discussed.展开更多
Pd-MoO3/SiO2 catalyst has been prepared using the method of incipient wetness impregnation. The photo absorbing behaviors and chemisorbing properties of the catalyst have been characterized by UV-vis spectra and TPD-M...Pd-MoO3/SiO2 catalyst has been prepared using the method of incipient wetness impregnation. The photo absorbing behaviors and chemisorbing properties of the catalyst have been characterized by UV-vis spectra and TPD-MS experiments. The results indicated that metal Pd loaded on MoOa/SiO2 has a significant effect on the photo absorbing performance of MoOa/SiO2, and an obvious blue shift of the absorption edge is produced. Under UV irradiation, the chemisorption state of CO2 undergoes decomposing process to form CO at 481 K, and a two-site adsorption state of ethane can be formed at around 496 K. Photo-oxidation of ethane using carbon dioxide can mainly produce propanal, ethanol and acetaldehyde in the temperature range of 353-423 K. The presence of metal Pd improves the catalytic activity remarkably.展开更多
The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were ...The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were obtained. The activation energy. H_2 and CO dependenceorders for ethanol and acetaldehyde formation differed greatly, the large difference seemed to implythat they were formed through different intermediates.展开更多
In this investigation, a clean, atomic economic and direct synthesis of oxygenates (methanol, ethanol) form water and methane via dielectric-barrier discharge was developed at room temperature and under atmospheric pr...In this investigation, a clean, atomic economic and direct synthesis of oxygenates (methanol, ethanol) form water and methane via dielectric-barrier discharge was developed at room temperature and under atmospheric pressure. The effect of discharge voltage on this process was studied. The results showed that the conversion of water can be as high as 7%, the selectivity of methanol and ethanol can be as high as 100%.展开更多
Effectively controlling the selectivity of C_(2) oxygenates is desirable for electrocatalytic CO_(2) reduction.Copper catalyst has been considered as the most potential for reducing CO_(2) to C_(2) products,but it sti...Effectively controlling the selectivity of C_(2) oxygenates is desirable for electrocatalytic CO_(2) reduction.Copper catalyst has been considered as the most potential for reducing CO_(2) to C_(2) products,but it still suffers from low C_(2) selectivity,high overpotential,and competitive hydrogen evolution reaction(HER).Here,we propose a design strategy to introduce a second metal that weakly binds to H and a functional ligand that provides hydrogen bonds and protons to achieve high selectivity of C_(2)oxygenates and effective suppression of HER on the Cu(100)surface simultaneously.Seven metals and eleven ligands are screened using first-principles calculations,which shows that Sn is the most efficient for inhibiting HER and cysteamine(CYS)ligand is the most significant in reducing the limiting potential of^(*)CO hydrogenation to^(*)CHO.In the post C-C coupling steps,a so-called“pulling effect”that transfers H in the CYS ligand as a viable proton donor to the C_(2)intermediate to form an H bond,can further stabilize the OH group and facilitate the selection of C_(2)products toward oxygenates.Therefore,this heterogeneous electrocatalyst can effectively reduce CO_(2)to ethanol and ethylene glycol with an ultra-low limiting potential of-0.43 V.This study provides a new strategy for effectively improving the selectivity of C_(2)oxygenates and inhibiting HER to achieve advanced electrocatalytic CO_(2)reduction.展开更多
Partial oxidation of methane to formaldehyde and methanol was studied at atmospheric pressure in the temperature range of 700-750 °C using heteropolycompound catalysts (NH4)6HSiMo11FeO40, (NH4)4PMo11FeO39, an...Partial oxidation of methane to formaldehyde and methanol was studied at atmospheric pressure in the temperature range of 700-750 °C using heteropolycompound catalysts (NH4)6HSiMo11FeO40, (NH4)4PMo11FeO39, and H4PMo11VO40, which were prepared and characterized by various analysis techniques such as infrared, visible UV, XRD and DTA. O2 or N2O was used as the oxidizing agent, and the principal products of the reaction were CH3OH, CH2O, CO, CO2, and water. The conversion and the selectivity of products depend strongly on the reaction temperature, the nature of oxidizing agent, and the composition of catalyst.展开更多
This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the cataly...This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.展开更多
Photoinduced synthesis of CO2 and CH4 was investigated using a batch reaction system on several photoactive materials supported on silicon dioxide. Single semiconductor showed higher selectivity to C1 compounds. The p...Photoinduced synthesis of CO2 and CH4 was investigated using a batch reaction system on several photoactive materials supported on silicon dioxide. Single semiconductor showed higher selectivity to C1 compounds. The production of C2-C3 oxygenates took place preferentially on composite semiconductor photocatalysts. In particular, it was found that acetone was the primary product over Cu / CdS –TiO2 / SiO2.展开更多
The purpose of this paper is to study the effect of oxygenate additives into gasoline for the improvement of physicochemical properties of blends.Methyl Tertiary Butyl Ether(MTBE),Methanol,Tertiary butyl alcohol(TB...The purpose of this paper is to study the effect of oxygenate additives into gasoline for the improvement of physicochemical properties of blends.Methyl Tertiary Butyl Ether(MTBE),Methanol,Tertiary butyl alcohol(TBA),and Tertiary amyl alcohol(TAA) blend into unleaded gasoline with various blended rates of 2.5%,5%,7.5%,10%,15%,and 20%.Physicochemical properties of blends are analyzed by the standard American Society of Testing and Materials(ASTM) methods.Methanol,TBA,and TAA increase density of the mixtures,but MTBE decreases density.The addition of oxygenates lead to a distortion of the base gasoline's distillation curves.The Reid vapor pressure(RVP) of gasoline is found to increase with the addition of the oxygenated compounds.All oxygenates improve both motor and research octane numbers.Among these four additives,TBA shows the best fuel properties.展开更多
EHMO calculations and orbital analyses of fragment;;have been performed for the formation of oxygenates in Fischer-Tropsch synthesis on the butterfly model for four different metal (Ni,Ru,Rh,Pd) catalysts supported on...EHMO calculations and orbital analyses of fragment;;have been performed for the formation of oxygenates in Fischer-Tropsch synthesis on the butterfly model for four different metal (Ni,Ru,Rh,Pd) catalysts supported on SiO2.Calculations were made for the four processes,i.e.,CO-dissociation;Coupling of CO and H to produce CHO;Insertion of CO to M-CH3;insertion of CH2 to M-CH3 On the basis of comparing the degree of CO bonds activation and the energy barriers of the foregoing processes for these four catalysts,it is concluded that Ni/SiO2 can be used as the methanation catalyst.On Ru/SiO2 and Rh/SiO2 C2-oxygenated compound can be produced (acetaldehyde),especially Rh/SiO2 is the even better catalyst,and Pd/SiO2 is a methanol synthesis catalyst.展开更多
The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper ...The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.展开更多
Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Her...Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Herein,we propose a comprehensive strategy for the selective generation of reactive oxygen species(ROS)by regulating the sizes and facets of Au nanoparticles loaded on ZnO.For photocatalytic methane oxidation at ambient temperature,a high oxygenates yield of 36.4 mmol·g^(-1)·h^(-1) with a nearly 100%selectivity has been achieved over the optimized 1.0%Au/ZnO-9.6(1%Au with(111)facet and 9.6 nm size on ZnO)photocatalyst,exceeding most reported literatures.Mechanism investigations reveal that 1.0%Au/ZnO-9.6 with the medium size and Au(111)facet guarantees the favourable formation of superoxide radicals(·OOH)through mild oxygen reduction,ultimately leading to excellent photocatalytic methane oxidation performance.This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.展开更多
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab...Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.展开更多
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
文摘The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hydrogenation deoxygenation,solvent extraction,and extraction distillation,adsorption deoxygenation technology has the advantages of low cost,mild operating conditions,easy removal and recovery,and mini-mal impact on oil quality.Therefore,adsorption deoxygenation technology has devel-oped rapidly in various removal processes and has become a research hotspot in the cur-rent Fischer Tropsch oil deoxygenation.Adsorbents are the core of adsorption deoxygen-ation technology.Therefore,this article briefly introduces the adsorption mechanism and summarizes the research progress of adsorbents widely used in recent years,such as silica gel,alumina,molecular sieves,and metal organic frameworks,in adsorbing oxygen-containing compounds in Fischer Tropsch synthetic oils.And provide reference sugges-tions for further adsorption and deoxygenation directions in the future.
基金This research was supported by the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)Basic Research Project of Sinopec Group(415025)the Fundamental Research Funds for the Central Universities.
文摘Iron-containing zeolites play an important role in the selective oxidation of methane to oxygenates by nitrous oxide.A solid-state ion exchange method is adopted to prepare Fe-MOR zeolite catalysts with different amounts of extra-framework Al.EPR spectra and UV-vis spectra show that the percentage of iron ions in tetrahedral or octahedral coordination increases while those of clustered Fe species decrease by the addition of extra-framework Al species.Nitrous oxide titration reveals that more active Fe centers are formed,which promote the nitrous oxide consumption.The number of active centers in the catalyst with the introduction of extra-framework Al is about four times that of the catalyst without the addition of extra-framework Al.Due to this,there is an increase in the methane conversion,total selectivity and yield of oxygenates.
基金funded by National Natural Science Foundation of China(22022814,21878283)Youth Innovation Promotion Association CAS(2017223)+1 种基金"Strategic Priority Research Program"of the Chinese academy of Sciences(XDB17020100)the National Key projects for Fundamental Research and Development of China(2016YFA0202801)。
文摘Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,the CAH bond of products is more reactive than that of high thermodynamic stable methane.Exploring an appropriate approach to eliminate the‘‘seesaw effect"between methane conversion and oxygenate selectivity is significant.In this review,we briefly summarize the research progress in the past decade on low-temperature direct conversion of methane to oxygenates in gas-solid-liquid phase over various transition metal(Fe,Cu,Rh,Pd,Au Pd,etc.)based nanoparticle or single-atom catalyst.Furthermore,the prospects of catalyst design and catalysis process are also discussed.
基金This work was supported by the National Key Basic Research Project of China (No. 2001CCA03600).
文摘Pd-MoO3/SiO2 catalyst has been prepared using the method of incipient wetness impregnation. The photo absorbing behaviors and chemisorbing properties of the catalyst have been characterized by UV-vis spectra and TPD-MS experiments. The results indicated that metal Pd loaded on MoOa/SiO2 has a significant effect on the photo absorbing performance of MoOa/SiO2, and an obvious blue shift of the absorption edge is produced. Under UV irradiation, the chemisorption state of CO2 undergoes decomposing process to form CO at 481 K, and a two-site adsorption state of ethane can be formed at around 496 K. Photo-oxidation of ethane using carbon dioxide can mainly produce propanal, ethanol and acetaldehyde in the temperature range of 353-423 K. The presence of metal Pd improves the catalytic activity remarkably.
基金This work was financially by the Chinese Science and Technology Ministry (Grant No.G1999022404)
文摘The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were obtained. The activation energy. H_2 and CO dependenceorders for ethanol and acetaldehyde formation differed greatly, the large difference seemed to implythat they were formed through different intermediates.
文摘In this investigation, a clean, atomic economic and direct synthesis of oxygenates (methanol, ethanol) form water and methane via dielectric-barrier discharge was developed at room temperature and under atmospheric pressure. The effect of discharge voltage on this process was studied. The results showed that the conversion of water can be as high as 7%, the selectivity of methanol and ethanol can be as high as 100%.
基金supported by the National Natural Science Foundation of China(Grant No.22033002,21525311,21773027)the Scientific Research Foundation of Graduate School of Southeast University(YBPY1920)+1 种基金the China Postdoctoral Science Foundation(Grant No.2020M681450)the China Scholarship Council(CSC,201906090150)。
文摘Effectively controlling the selectivity of C_(2) oxygenates is desirable for electrocatalytic CO_(2) reduction.Copper catalyst has been considered as the most potential for reducing CO_(2) to C_(2) products,but it still suffers from low C_(2) selectivity,high overpotential,and competitive hydrogen evolution reaction(HER).Here,we propose a design strategy to introduce a second metal that weakly binds to H and a functional ligand that provides hydrogen bonds and protons to achieve high selectivity of C_(2)oxygenates and effective suppression of HER on the Cu(100)surface simultaneously.Seven metals and eleven ligands are screened using first-principles calculations,which shows that Sn is the most efficient for inhibiting HER and cysteamine(CYS)ligand is the most significant in reducing the limiting potential of^(*)CO hydrogenation to^(*)CHO.In the post C-C coupling steps,a so-called“pulling effect”that transfers H in the CYS ligand as a viable proton donor to the C_(2)intermediate to form an H bond,can further stabilize the OH group and facilitate the selection of C_(2)products toward oxygenates.Therefore,this heterogeneous electrocatalyst can effectively reduce CO_(2)to ethanol and ethylene glycol with an ultra-low limiting potential of-0.43 V.This study provides a new strategy for effectively improving the selectivity of C_(2)oxygenates and inhibiting HER to achieve advanced electrocatalytic CO_(2)reduction.
文摘Partial oxidation of methane to formaldehyde and methanol was studied at atmospheric pressure in the temperature range of 700-750 °C using heteropolycompound catalysts (NH4)6HSiMo11FeO40, (NH4)4PMo11FeO39, and H4PMo11VO40, which were prepared and characterized by various analysis techniques such as infrared, visible UV, XRD and DTA. O2 or N2O was used as the oxidizing agent, and the principal products of the reaction were CH3OH, CH2O, CO, CO2, and water. The conversion and the selectivity of products depend strongly on the reaction temperature, the nature of oxidizing agent, and the composition of catalyst.
基金Financial support by the Spanish Government(RTI2018-099668-B-C21,PGC2018-097277-B-100,and SEV-2016-0683)the Severo Ochoa Excellence Program(SVP-2014-068669)the “La Caixa-Severo Ochoa” Foundation,respectively,for their fellowships~~
文摘This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.
文摘Photoinduced synthesis of CO2 and CH4 was investigated using a batch reaction system on several photoactive materials supported on silicon dioxide. Single semiconductor showed higher selectivity to C1 compounds. The production of C2-C3 oxygenates took place preferentially on composite semiconductor photocatalysts. In particular, it was found that acetone was the primary product over Cu / CdS –TiO2 / SiO2.
文摘The purpose of this paper is to study the effect of oxygenate additives into gasoline for the improvement of physicochemical properties of blends.Methyl Tertiary Butyl Ether(MTBE),Methanol,Tertiary butyl alcohol(TBA),and Tertiary amyl alcohol(TAA) blend into unleaded gasoline with various blended rates of 2.5%,5%,7.5%,10%,15%,and 20%.Physicochemical properties of blends are analyzed by the standard American Society of Testing and Materials(ASTM) methods.Methanol,TBA,and TAA increase density of the mixtures,but MTBE decreases density.The addition of oxygenates lead to a distortion of the base gasoline's distillation curves.The Reid vapor pressure(RVP) of gasoline is found to increase with the addition of the oxygenated compounds.All oxygenates improve both motor and research octane numbers.Among these four additives,TBA shows the best fuel properties.
文摘EHMO calculations and orbital analyses of fragment;;have been performed for the formation of oxygenates in Fischer-Tropsch synthesis on the butterfly model for four different metal (Ni,Ru,Rh,Pd) catalysts supported on SiO2.Calculations were made for the four processes,i.e.,CO-dissociation;Coupling of CO and H to produce CHO;Insertion of CO to M-CH3;insertion of CH2 to M-CH3 On the basis of comparing the degree of CO bonds activation and the energy barriers of the foregoing processes for these four catalysts,it is concluded that Ni/SiO2 can be used as the methanation catalyst.On Ru/SiO2 and Rh/SiO2 C2-oxygenated compound can be produced (acetaldehyde),especially Rh/SiO2 is the even better catalyst,and Pd/SiO2 is a methanol synthesis catalyst.
基金supported by the National Natural Science Foundation of China(Nos.92145301,91845201,22002094,22102106,22309061)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS360).
文摘The selective oxidation of methane under mild conditions remains the“Holy Grail of Catalysis”.The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers.Copper nanoparticles were loaded onto TiO_(2) nanofibers using the photo-deposition method.The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions.Compared with previously reported catalysts,it delivers a superior performance of up to 2510.7 mmol·g_(Cu)^(-1)·h^(-1) productivity with a selectivity of around 100%at 80℃for 5 min.Microstructure characterizations and density functional theory(DFT)calculations indicate that TiO_(2) in the mixed phase of anatase and rutile significantly increases the Cu^(+)/CuO ratio of the supported Cu species,and this ratio is linearly related to the formation rate of oxygen-containing species.The CuI site promotes the generation of active O species from H_(2)O_(2) dissociation on Cu_(2)O(111).These active O species reduce the energy barrier for breaking the C-H bond of CH_(4),thus boosting the catalytic activity.The methane conversion mechanism was proposed as a methyl radical pathway to form CH_(3)OH and CH_(3)OOH,and then the generated CH_(3)OH is further oxidized to HOCH_(2)OOH.
基金supported by the National Key Research and Development Program of China(No.2019YFA0708700)the National Natural Science Foundation of China(Nos.22322815,22179146,51672309,51172285,51372277)+5 种基金the Major Scientific and Technological Innovation Project of Shandong Province(No.2020CXGC010402)the Fundamental Research Funds for Central Universities(No.18CX07009A)YanKuang Group Co.,Ltd.(No.YKZB2020-167)the Young Taishan Scholar Program of Shandong Province(No.tsqn20182027)Taishan Scholar Project(No.ts201712020)the Technological Leading Scholar of 10000 Talent Project(No.W03020508).
文摘Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions,nevertheless confronting great challenges in efficiently activating C-H bonds and inhibiting over-oxidation.Herein,we propose a comprehensive strategy for the selective generation of reactive oxygen species(ROS)by regulating the sizes and facets of Au nanoparticles loaded on ZnO.For photocatalytic methane oxidation at ambient temperature,a high oxygenates yield of 36.4 mmol·g^(-1)·h^(-1) with a nearly 100%selectivity has been achieved over the optimized 1.0%Au/ZnO-9.6(1%Au with(111)facet and 9.6 nm size on ZnO)photocatalyst,exceeding most reported literatures.Mechanism investigations reveal that 1.0%Au/ZnO-9.6 with the medium size and Au(111)facet guarantees the favourable formation of superoxide radicals(·OOH)through mild oxygen reduction,ultimately leading to excellent photocatalytic methane oxidation performance.This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
基金supported by the Projects of the National Key R&D Program of China,Nos.2021YFC2400803(to YO),2021YFC2400801(to YQ)the National Natural Science Foundation of China,Nos.82002290(to YQ),82072452(to YO),82272475(to YO)+5 种基金the Young Elite Scientist Sponsorship Program by Cast,No.YESS20200153(to YQ)the Sino-German Mobility Programme,No.M-0699(to YQ)the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital,No.ynyq202201(to YQ)the Shanghai Sailing Program,No.20YF1436000(to YQ)the Medical Engineering Co-Project of University of Shanghai for Science and Technology,10-22-310-520(to YO)a grant from Shanghai Municipal Health Commission,No.202040399(to YO).
文摘Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.